32,213 research outputs found

    Guided Grammar Convergence. Full Case Study Report. Generated by converge::Guided

    Get PDF
    This report is meant to be used as auxiliary material for the guided grammar convergence technique proposed earlier as problem-specific improvement in the topic of convergence of grammars. It contains a narrated MegaL megamodel, as well as full results of the guided grammar convergence experiment on the Factorial Language, with details about each grammar source packaged in a readable form. All formulae used within this document, are generated automatically by the convergence infrastructure in order to avoid any mistakes. The generator source code and the source of the introduction text can be found publicly available in the Software Language Processing Suite repository

    An Architecture-Altering and Training Methodology for Neural Logic Networks: Application in the Banking Sector

    Get PDF
    Artificial neural networks have been universally acknowledged for their ability on constructing forecasting and classifying systems. Among their desirable features, it has always been the interpretation of their structure, aiming to provide further knowledge for the domain experts. A number of methodologies have been developed for this reason. One such paradigm is the neural logic networks concept. Neural logic networks have been especially designed in order to enable the interpretation of their structure into a number of simple logical rules and they can be seen as a network representation of a logical rule base. Although powerful by their definition in this context, neural logic networks have performed poorly when used in approaches that required training from data. Standard training methods, such as the back-propagation, require the network’s synapse weight altering, which destroys the network’s interpretability. The methodology in this paper overcomes these problems and proposes an architecture-altering technique, which enables the production of highly antagonistic solutions while preserving any weight-related information. The implementation involves genetic programming using a grammar-guided training approach, in order to provide arbitrarily large and connected neural logic networks. The methodology is tested in a problem from the banking sector with encouraging results

    A Multi-Gene Genetic Programming Application for Predicting Students Failure at School

    Full text link
    Several efforts to predict student failure rate (SFR) at school accurately still remains a core problem area faced by many in the educational sector. The procedure for forecasting SFR are rigid and most often times require data scaling or conversion into binary form such as is the case of the logistic model which may lead to lose of information and effect size attenuation. Also, the high number of factors, incomplete and unbalanced dataset, and black boxing issues as in Artificial Neural Networks and Fuzzy logic systems exposes the need for more efficient tools. Currently the application of Genetic Programming (GP) holds great promises and has produced tremendous positive results in different sectors. In this regard, this study developed GPSFARPS, a software application to provide a robust solution to the prediction of SFR using an evolutionary algorithm known as multi-gene genetic programming. The approach is validated by feeding a testing data set to the evolved GP models. Result obtained from GPSFARPS simulations show its unique ability to evolve a suitable failure rate expression with a fast convergence at 30 generations from a maximum specified generation of 500. The multi-gene system was also able to minimize the evolved model expression and accurately predict student failure rate using a subset of the original expressionComment: 14 pages, 9 figures, Journal paper. arXiv admin note: text overlap with arXiv:1403.0623 by other author

    Evolutionary generation of fuzzy knowledge bases for diagnosing monitored railway systems

    Get PDF
    Classical approaches when building diagnosis and monitoring systems are rule-based systems, which allow the representation of existing knowledge by using rules. There are several techniques that facilitate this task, such as fuzzy logic, which allows knowledge to be modeled in an intuitive way. Nevertheless, sometimes it is not easy to define the fuzzy rule set that represents the knowledge from a certain domain. To overcome this drawback, an evolutionary system based on a grammar guided genetic programming technique for the automatic generation of fuzzy knowledge bases has been employed in diagnosing monitored railway networks. This system employs a grammar-based initialization method and both, grammar-based crossover and mutation operators, to achieve well balanced exploitation and exploration capabilities of the search space, assuring high convergence speed and low chance of getting trapped in local optima. Tests have been carried out in a real-world train monitoring domain, in which a sensor network is periodically monitoring critical train components. Results achieved show that this evolutionary system accomplishes an automatic knowledge discovery process, which is able to build a fuzzy rule base that represents the expert knowledge extracted from the domain of the detection of abnormal train conditions

    Decision Making in the Medical Domain: Comparing the Effectiveness of GP-Generated Fuzzy Intelligent Structures

    Get PDF
    ABSTRACT: In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based systems and fuzzy Petri nets with genetic programming. Then, we apply cellular encoding in order to express the fuzzy Petri nets with arbitrary size and topology. The models are examined thoroughly in four real-world medical data sets. Results are presented in detail and the competitive advantages and drawbacks of the selected methodologies are discussed, in respect to the nature of each application domain. Conclusions are drawn on the effectiveness and efficiency of the presented approach

    Are There Good Mistakes? A Theoretical Analysis of CEGIS

    Full text link
    Counterexample-guided inductive synthesis CEGIS is used to synthesize programs from a candidate space of programs. The technique is guaranteed to terminate and synthesize the correct program if the space of candidate programs is finite. But the technique may or may not terminate with the correct program if the candidate space of programs is infinite. In this paper, we perform a theoretical analysis of counterexample-guided inductive synthesis technique. We investigate whether the set of candidate spaces for which the correct program can be synthesized using CEGIS depends on the counterexamples used in inductive synthesis, that is, whether there are good mistakes which would increase the synthesis power. We investigate whether the use of minimal counterexamples instead of arbitrary counterexamples expands the set of candidate spaces of programs for which inductive synthesis can successfully synthesize a correct program. We consider two kinds of counterexamples: minimal counterexamples and history bounded counterexamples. The history bounded counterexample used in any iteration of CEGIS is bounded by the examples used in previous iterations of inductive synthesis. We examine the relative change in power of inductive synthesis in both cases. We show that the synthesis technique using minimal counterexamples MinCEGIS has the same synthesis power as CEGIS but the synthesis technique using history bounded counterexamples HCEGIS has different power than that of CEGIS, but none dominates the other.Comment: In Proceedings SYNT 2014, arXiv:1407.493
    • …
    corecore