296 research outputs found

    High-Fidelity Audio Generation and Representation Learning with Guided Adversarial Autoencoder

    Get PDF
    Unsupervised disentangled representation learning from the unlabelled audio data, and high fidelity audio generation have become two linchpins in the machine learning research fields. However, the representation learned from an unsupervised setting does not guarantee its' usability for any downstream task at hand, which can be a wastage of the resources, if the training was conducted for that particular posterior job. Also, during the representation learning, if the model is highly biased towards the downstream task, it losses its generalisation capability which directly benefits the downstream job but the ability to scale it to other related task is lost. Therefore, to fill this gap, we propose a new autoencoder based model named "Guided Adversarial Autoencoder (GAAE)", which can learn both post-task-specific representations and the general representation capturing the factors of variation in the training data leveraging a small percentage of labelled samples; thus, makes it suitable for future related tasks. Furthermore, our proposed model can generate audio with superior quality, which is indistinguishable from the real audio samples. Hence, with the extensive experimental results, we have demonstrated that by harnessing the power of the high-fidelity audio generation, the proposed GAAE model can learn powerful representation from unlabelled dataset leveraging a fewer percentage of labelled data as supervision/guidance

    A Review of Deep Learning Techniques for Speech Processing

    Full text link
    The field of speech processing has undergone a transformative shift with the advent of deep learning. The use of multiple processing layers has enabled the creation of models capable of extracting intricate features from speech data. This development has paved the way for unparalleled advancements in speech recognition, text-to-speech synthesis, automatic speech recognition, and emotion recognition, propelling the performance of these tasks to unprecedented heights. The power of deep learning techniques has opened up new avenues for research and innovation in the field of speech processing, with far-reaching implications for a range of industries and applications. This review paper provides a comprehensive overview of the key deep learning models and their applications in speech-processing tasks. We begin by tracing the evolution of speech processing research, from early approaches, such as MFCC and HMM, to more recent advances in deep learning architectures, such as CNNs, RNNs, transformers, conformers, and diffusion models. We categorize the approaches and compare their strengths and weaknesses for solving speech-processing tasks. Furthermore, we extensively cover various speech-processing tasks, datasets, and benchmarks used in the literature and describe how different deep-learning networks have been utilized to tackle these tasks. Additionally, we discuss the challenges and future directions of deep learning in speech processing, including the need for more parameter-efficient, interpretable models and the potential of deep learning for multimodal speech processing. By examining the field's evolution, comparing and contrasting different approaches, and highlighting future directions and challenges, we hope to inspire further research in this exciting and rapidly advancing field

    Artificial Intelligence in the Creative Industries: A Review

    Full text link
    This paper reviews the current state of the art in Artificial Intelligence (AI) technologies and applications in the context of the creative industries. A brief background of AI, and specifically Machine Learning (ML) algorithms, is provided including Convolutional Neural Network (CNNs), Generative Adversarial Networks (GANs), Recurrent Neural Networks (RNNs) and Deep Reinforcement Learning (DRL). We categorise creative applications into five groups related to how AI technologies are used: i) content creation, ii) information analysis, iii) content enhancement and post production workflows, iv) information extraction and enhancement, and v) data compression. We critically examine the successes and limitations of this rapidly advancing technology in each of these areas. We further differentiate between the use of AI as a creative tool and its potential as a creator in its own right. We foresee that, in the near future, machine learning-based AI will be adopted widely as a tool or collaborative assistant for creativity. In contrast, we observe that the successes of machine learning in domains with fewer constraints, where AI is the `creator', remain modest. The potential of AI (or its developers) to win awards for its original creations in competition with human creatives is also limited, based on contemporary technologies. We therefore conclude that, in the context of creative industries, maximum benefit from AI will be derived where its focus is human centric -- where it is designed to augment, rather than replace, human creativity

    On the Design Fundamentals of Diffusion Models: A Survey

    Full text link
    Diffusion models are generative models, which gradually add and remove noise to learn the underlying distribution of training data for data generation. The components of diffusion models have gained significant attention with many design choices proposed. Existing reviews have primarily focused on higher-level solutions, thereby covering less on the design fundamentals of components. This study seeks to address this gap by providing a comprehensive and coherent review on component-wise design choices in diffusion models. Specifically, we organize this review according to their three key components, namely the forward process, the reverse process, and the sampling procedure. This allows us to provide a fine-grained perspective of diffusion models, benefiting future studies in the analysis of individual components, the applicability of design choices, and the implementation of diffusion models

    Pathway to Future Symbiotic Creativity

    Full text link
    This report presents a comprehensive view of our vision on the development path of the human-machine symbiotic art creation. We propose a classification of the creative system with a hierarchy of 5 classes, showing the pathway of creativity evolving from a mimic-human artist (Turing Artists) to a Machine artist in its own right. We begin with an overview of the limitations of the Turing Artists then focus on the top two-level systems, Machine Artists, emphasizing machine-human communication in art creation. In art creation, it is necessary for machines to understand humans' mental states, including desires, appreciation, and emotions, humans also need to understand machines' creative capabilities and limitations. The rapid development of immersive environment and further evolution into the new concept of metaverse enable symbiotic art creation through unprecedented flexibility of bi-directional communication between artists and art manifestation environments. By examining the latest sensor and XR technologies, we illustrate the novel way for art data collection to constitute the base of a new form of human-machine bidirectional communication and understanding in art creation. Based on such communication and understanding mechanisms, we propose a novel framework for building future Machine artists, which comes with the philosophy that a human-compatible AI system should be based on the "human-in-the-loop" principle rather than the traditional "end-to-end" dogma. By proposing a new form of inverse reinforcement learning model, we outline the platform design of machine artists, demonstrate its functions and showcase some examples of technologies we have developed. We also provide a systematic exposition of the ecosystem for AI-based symbiotic art form and community with an economic model built on NFT technology. Ethical issues for the development of machine artists are also discussed

    RenAIssance: A Survey into AI Text-to-Image Generation in the Era of Large Model

    Full text link
    Text-to-image generation (TTI) refers to the usage of models that could process text input and generate high fidelity images based on text descriptions. Text-to-image generation using neural networks could be traced back to the emergence of Generative Adversial Network (GAN), followed by the autoregressive Transformer. Diffusion models are one prominent type of generative model used for the generation of images through the systematic introduction of noises with repeating steps. As an effect of the impressive results of diffusion models on image synthesis, it has been cemented as the major image decoder used by text-to-image models and brought text-to-image generation to the forefront of machine-learning (ML) research. In the era of large models, scaling up model size and the integration with large language models have further improved the performance of TTI models, resulting the generation result nearly indistinguishable from real-world images, revolutionizing the way we retrieval images. Our explorative study has incentivised us to think that there are further ways of scaling text-to-image models with the combination of innovative model architectures and prediction enhancement techniques. We have divided the work of this survey into five main sections wherein we detail the frameworks of major literature in order to delve into the different types of text-to-image generation methods. Following this we provide a detailed comparison and critique of these methods and offer possible pathways of improvement for future work. In the future work, we argue that TTI development could yield impressive productivity improvements for creation, particularly in the context of the AIGC era, and could be extended to more complex tasks such as video generation and 3D generation

    Generation of realistic human behaviour

    Get PDF
    As the use of computers and robots in our everyday lives increases so does the need for better interaction with these devices. Human-computer interaction relies on the ability to understand and generate human behavioural signals such as speech, facial expressions and motion. This thesis deals with the synthesis and evaluation of such signals, focusing not only on their intelligibility but also on their realism. Since these signals are often correlated, it is common for methods to drive the generation of one signal using another. The thesis begins by tackling the problem of speech-driven facial animation and proposing models capable of producing realistic animations from a single image and an audio clip. The goal of these models is to produce a video of a target person, whose lips move in accordance with the driving audio. Particular focus is also placed on a) generating spontaneous expression such as blinks, b) achieving audio-visual synchrony and c) transferring or producing natural head motion. The second problem addressed in this thesis is that of video-driven speech reconstruction, which aims at converting a silent video into waveforms containing speech. The method proposed for solving this problem is capable of generating intelligible and accurate speech for both seen and unseen speakers. The spoken content is correctly captured thanks to a perceptual loss, which uses features from pre-trained speech-driven animation models. The ability of the video-to-speech model to run in real-time allows its use in hearing assistive devices and telecommunications. The final work proposed in this thesis is a generic domain translation system, that can be used for any translation problem including those mapping across different modalities. The framework is made up of two networks performing translations in opposite directions and can be successfully applied to solve diverse sets of translation problems, including speech-driven animation and video-driven speech reconstruction.Open Acces

    Impact Of Semantics, Physics And Adversarial Mechanisms In Deep Learning

    Get PDF
    Deep learning has greatly advanced the performance of algorithms on tasks such as image classification, speech enhancement, sound separation, and generative image models. However many current popular systems are driven by empirical rules that do not fully exploit the underlying physics of the data. Many speech and audio systems fix STFT preprocessing before their networks. Hyperspectral Image (HSI) methods often don't deliberately consider the spectral spatial trade off that is not present in normal images. Generative Adversarial Networks (GANs) that learn a generative distribution of images don't prioritize semantic labels of the training data. To meet these opportunities we propose to alter known deep learning methods to be more dependent on the semantic and physical underpinnings of the data to create better performing and more robust algorithms for sound separation and classification, image generation, and HSI segmentation. Our approaches take inspiration from from Harmonic Analysis, SVMs, and classical statistical detection theory, and further the state-of-the art in source separation, defense against audio adversarial attacks, HSI classification, and GANs. Recent deep learning approaches have achieved impressive performance on speech enhancement and separation tasks. However, these approaches have not been investigated for separating mixtures of arbitrary sounds of different types, a task we refer to as universal sound separation. To study this question, we develop a dataset of mixtures containing arbitrary sounds, and use it to investigate the space of mask-based separation architectures, varying both the overall network architecture and the framewise analysis-synthesis basis for signal transformations. We compare using a short-time Fourier transform (STFT) with a learnable basis at variable window sizes for the feature extraction stage of our sound separation network. We also compare the robustness to adversarial examples of speech classification networks that similarly hybridize established Time-frequency (TF) methods with learnable filter weights. We analyze HSI images for material classification. For hyperspectral image cubes TF methods decompose spectra into multi-spectral bands, while Neural Networks (NNs) incorporate spatial information across scales and model multiple levels of dependencies between spectral features. The Fourier scattering transform is an amalgamation of time-frequency representations with neural network architectures. We propose and test a three dimensional Fourier scattering method on hyperspectral datasets, and present results that indicate that the Fourier scattering transform is highly effective at representing spectral data when compared with other state-of-the-art methods. We study the spectral-spatial trade-off that our Scattering approach allows.We also use a similar multi-scale approach to develop a defense against audio adversarial attacks. We propose a unification of a computational model of speech processing in the brain with commercial wake-word networks to create a cortical network, and show that it can increase resistance to adversarial noise without a degradation in performance. Generative Adversarial Networks are an attractive approach to constructing generative models that mimic a target distribution, and typically use conditional information (cGANs) such as class labels to guide the training of the discriminator and the generator. We propose a loss that ensures generator updates are always class specific, rather than training a function that measures the information theoretic distance between the generative distribution and one target distribution, we generalize the successful hinge-loss that has become an essential ingredient of many GANs to the multi-class setting and use it to train a single generator classifier pair. While the canonical hinge loss made generator updates according to a class agnostic margin a real/fake discriminator learned, our multi-class hinge-loss GAN updates the generator according to many classification margins. With this modification, we are able to accelerate training and achieve state of the art Inception and FID scores on Imagenet128. We study the trade-off between class fidelity and overall diversity of generated images, and show modifications of our method can prioritize either each during training. We show that there is a limit to how closely classification and discrimination can be combined while maintaining sample diversity with some theoretical results on K+1 GANs
    • …
    corecore