2,116 research outputs found

    Barry Smith an sich

    Get PDF
    Festschrift in Honor of Barry Smith on the occasion of his 65th Birthday. Published as issue 4:4 of the journal Cosmos + Taxis: Studies in Emergent Order and Organization. Includes contributions by Wolfgang Grassl, Nicola Guarino, John T. Kearns, Rudolf LĂŒthe, Luc Schneider, Peter Simons, Wojciech Ć»eƂaniec, and Jan WoleƄski

    Classifiers for modeling of mineral potential

    Get PDF
    [Extract] Classification and allocation of land-use is a major policy objective in most countries. Such an undertaking, however, in the face of competing demands from different stakeholders, requires reliable information on resources potential. This type of information enables policy decision-makers to estimate socio-economic benefits from different possible land-use types and then to allocate most suitable land-use. The potential for several types of resources occurring on the earth's surface (e.g., forest, soil, etc.) is generally easier to determine than those occurring in the subsurface (e.g., mineral deposits, etc.). In many situations, therefore, information on potential for subsurface occurring resources is not among the inputs to land-use decision-making [85]. Consequently, many potentially mineralized lands are alienated usually to, say, further exploration and exploitation of mineral deposits. Areas with mineral potential are characterized by geological features associated genetically and spatially with the type of mineral deposits sought. The term 'mineral deposits' means .accumulations or concentrations of one or more useful naturally occurring substances, which are otherwise usually distributed sparsely in the earth's crust. The term 'mineralization' refers to collective geological processes that result in formation of mineral deposits. The term 'mineral potential' describes the probability or favorability for occurrence of mineral deposits or mineralization. The geological features characteristic of mineralized land, which are called recognition criteria, are spatial objects indicative of or produced by individual geological processes that acted together to form mineral deposits. Recognition criteria are sometimes directly observable; more often, their presence is inferred from one or more geographically referenced (or spatial) datasets, which are processed and analyzed appropriately to enhance, extract, and represent the recognition criteria as spatial evidence or predictor maps. Mineral potential mapping then involves integration of predictor maps in order to classify areas of unique combinations of spatial predictor patterns, called unique conditions [51] as either barren or mineralized with respect to the mineral deposit-type sought

    Annual Research Report, 2009-2010

    Get PDF
    Annual report of collaborative research projects of Old Dominion University faculty and students in partnership with business, industry and governmenthttps://digitalcommons.odu.edu/or_researchreports/1001/thumbnail.jp

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Annual Report 1984. Chemistry Department

    Get PDF

    A data taxonomy for adaptive multifactor authentication in the internet of health care things

    Get PDF
    The health care industry has faced various challenges over the past decade as we move toward a digital future where services and data are available on demand. The systems of interconnected devices, users, data, and working environments are referred to as the Internet of Health Care Things (IoHT). IoHT devices have emerged in the past decade as cost-effective solutions with large scalability capabilities to address the constraints on limited resources. These devices cater to the need for remote health care services outside of physical interactions. However, IoHT security is often overlooked because the devices are quickly deployed and configured as solutions to meet the demands of a heavily saturated industry. During the COVID-19 pandemic, studies have shown that cybercriminals are exploiting the health care industry, and data breaches are targeting user credentials through authentication vulnerabilities. Poor password use and management and the lack of multifactor authentication security posture within IoHT cause a loss of millions according to the IBM reports. Therefore, it is important that health care authentication security moves toward adaptive multifactor authentication (AMFA) to replace the traditional approaches to authentication. We identified a lack of taxonomy for data models that particularly focus on IoHT data architecture to improve the feasibility of AMFA. This viewpoint focuses on identifying key cybersecurity challenges in a theoretical framework for a data model that summarizes the main components of IoHT data. The data are to be used in modalities that are suited for health care users in modern IoHT environments and in response to the COVID-19 pandemic. To establish the data taxonomy, a review of recent IoHT papers was conducted to discuss the related work in IoHT data management and use in next-generation authentication systems. Reports, journal articles, conferences, and white papers were reviewed for IoHT authentication data technologies in relation to the problem statement of remote authentication and user management systems. Only publications written in English from the last decade were included (2012-2022) to identify key issues within the current health care practices and their management of IoHT devices. We discuss the components of the IoHT architecture from the perspective of data management and sensitivity to ensure privacy for all users. The data model addresses the security requirements of IoHT users, environments, and devices toward the automation of AMFA in health care. We found that in health care authentication, the significant threats occurring were related to data breaches owing to weak security options and poor user configuration of IoHT devices. The security requirements of IoHT data architecture and identified impactful methods of cybersecurity for health care devices, data, and their respective attacks are discussed. Data taxonomy provides better understanding, solutions, and improvements of user authentication in remote working environments for security features

    Faculty Publications & Presentations, 2004-2005

    Get PDF

    Faculty Publications & Presentations, 2004-2005

    Get PDF
    • 

    corecore