491 research outputs found

    A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments

    Get PDF
    This article is posted here with permission from the IEEE - Copyright @ 2010 IEEEIn the real world, many optimization problems are dynamic. This requires an optimization algorithm to not only find the global optimal solution under a specific environment but also to track the trajectory of the changing optima over dynamic environments. To address this requirement, this paper investigates a clustering particle swarm optimizer (PSO) for dynamic optimization problems. This algorithm employs a hierarchical clustering method to locate and track multiple peaks. A fast local search method is also introduced to search optimal solutions in a promising subregion found by the clustering method. Experimental study is conducted based on the moving peaks benchmark to test the performance of the clustering PSO in comparison with several state-of-the-art algorithms from the literature. The experimental results show the efficiency of the clustering PSO for locating and tracking multiple optima in dynamic environments in comparison with other particle swarm optimization models based on the multiswarm method.This work was supported by the Engineering and Physical Sciences Research Council of U.K., under Grant EP/E060722/1

    A general framework of multi-population methods with clustering in undetectable dynamic environments

    Get PDF
    Copyright @ 2011 IEEETo solve dynamic optimization problems, multiple population methods are used to enhance the population diversity for an algorithm with the aim of maintaining multiple populations in different sub-areas in the fitness landscape. Many experimental studies have shown that locating and tracking multiple relatively good optima rather than a single global optimum is an effective idea in dynamic environments. However, several challenges need to be addressed when multi-population methods are applied, e.g., how to create multiple populations, how to maintain them in different sub-areas, and how to deal with the situation where changes can not be detected or predicted. To address these issues, this paper investigates a hierarchical clustering method to locate and track multiple optima for dynamic optimization problems. To deal with undetectable dynamic environments, this paper applies the random immigrants method without change detection based on a mechanism that can automatically reduce redundant individuals in the search space throughout the run. These methods are implemented into several research areas, including particle swarm optimization, genetic algorithm, and differential evolution. An experimental study is conducted based on the moving peaks benchmark to test the performance with several other algorithms from the literature. The experimental results show the efficiency of the clustering method for locating and tracking multiple optima in comparison with other algorithms based on multi-population methods on the moving peaks benchmark

    Handbook of Computational Intelligence in Manufacturing and Production Management

    Get PDF
    Artificial intelligence (AI) is simply a way of providing a computer or a machine to think intelligently like human beings. Since human intelligence is a complex abstraction, scientists have only recently began to understand and make certain assumptions on how people think and to apply these assumptions in order to design AI programs. It is a vast knowledge base discipline that covers reasoning, machine learning, planning, intelligent search, and perception building. Traditional AI had the limitations to meet the increasing demand of search, optimization, and machine learning in the areas of large, biological, and commercial database information systems and management of factory automation for different industries such as power, automobile, aerospace, and chemical plants. The drawbacks of classical AI became more pronounced due to successive failures of the decade long Japanese project on fifth generation computing machines. The limitation of traditional AI gave rise to development of new computational methods in various applications of engineering and management problems. As a result, these computational techniques emerged as a new discipline called computational intelligence (CI)

    Computational intelligence based complex adaptive system-of-systems architecture evolution strategy

    Get PDF
    The dynamic planning for a system-of-systems (SoS) is a challenging endeavor. Large scale organizations and operations constantly face challenges to incorporate new systems and upgrade existing systems over a period of time under threats, constrained budget and uncertainty. It is therefore necessary for the program managers to be able to look at the future scenarios and critically assess the impact of technology and stakeholder changes. Managers and engineers are always looking for options that signify affordable acquisition selections and lessen the cycle time for early acquisition and new technology addition. This research helps in analyzing sequential decisions in an evolving SoS architecture based on the wave model through three key features namely; meta-architecture generation, architecture assessment and architecture implementation. Meta-architectures are generated using evolutionary algorithms and assessed using type II fuzzy nets. The approach can accommodate diverse stakeholder views and convert them to key performance parameters (KPP) and use them for architecture assessment. On the other hand, it is not possible to implement such architecture without persuading the systems to participate into the meta-architecture. To address this issue a negotiation model is proposed which helps the SoS manger to adapt his strategy based on system owners behavior. This work helps in capturing the varied differences in the resources required by systems to prepare for participation. The viewpoints of multiple stakeholders are aggregated to assess the overall mission effectiveness of the overarching objective. An SAR SoS example problem illustrates application of the method. Also a dynamic programing approach can be used for generating meta-architectures based on the wave model. --Abstract, page iii

    Intelligent Computing: The Latest Advances, Challenges and Future

    Get PDF
    Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing. Intelligent computing is still in its infancy and an abundance of innovations in the theories, systems, and applications of intelligent computing are expected to occur soon. We present the first comprehensive survey of literature on intelligent computing, covering its theory fundamentals, the technological fusion of intelligence and computing, important applications, challenges, and future perspectives. We believe that this survey is highly timely and will provide a comprehensive reference and cast valuable insights into intelligent computing for academic and industrial researchers and practitioners

    Mining a Small Medical Data Set by Integrating the Decision Tree and t-test

    Get PDF
    [[abstract]]Although several researchers have used statistical methods to prove that aspiration followed by the injection of 95% ethanol left in situ (retention) is an effective treatment for ovarian endometriomas, very few discuss the different conditions that could generate different recovery rates for the patients. Therefore, this study adopts the statistical method and decision tree techniques together to analyze the postoperative status of ovarian endometriosis patients under different conditions. Since our collected data set is small, containing only 212 records, we use all of these data as the training data. Therefore, instead of using a resultant tree to generate rules directly, we use the value of each node as a cut point to generate all possible rules from the tree first. Then, using t-test, we verify the rules to discover some useful description rules after all possible rules from the tree have been generated. Experimental results show that our approach can find some new interesting knowledge about recurrent ovarian endometriomas under different conditions.[[journaltype]]國外[[incitationindex]]EI[[booktype]]紙本[[countrycodes]]FI

    Emergency medical supplies scheduling during public health emergencies: algorithm design based on AI techniques

    Get PDF
    Based on AI technology, this study proposes a novel large-scale emergency medical supplies scheduling (EMSS) algorithm to address the issues of low turnover efficiency of medical supplies and unbalanced supply and demand point scheduling in public health emergencies. We construct a fairness index using an improved Gini coefficient by considering the demand for emergency medical supplies (EMS), actual distribution, and the degree of emergency at disaster sites. We developed a bi-objective optimisation model with a minimum Gini index and scheduling time. We employ a heterogeneous ant colony algorithm to solve the Pareto boundary based on reinforcement learning. A reinforcement learning mechanism is introduced to update and exchange pheromones among populations, with reward factors set to adjust pheromones and improve algorithm convergence speed. The effectiveness of the algorithm for a large EMSS problem is verified by comparing its comprehensive performance against a super-large capacity evaluation index. Results demonstrate the algorithm's effectiveness in reducing convergence time and facilitating escape from local optima in EMSS problems. The algorithm addresses the issue of demand differences at each disaster point affecting fair distribution. This study optimises early-stage EMSS schemes for public health events to minimise losses and casualties while mitigating emotional distress among disaster victims

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper
    corecore