122 research outputs found

    Identifying Cloned Navigational Patterns in Web Applications

    Get PDF
    Web Applications are subject to continuous and rapid evolution. Often programmers indiscriminately duplicate Web pages without considering systematic development and maintenance methods. This practice creates code clones that make Web Applications hard to maintain and reuse. We present an approach to identify duplicated functionalities in Web Applications through cloned navigational pattern analysis. Cloned patterns can be generalized in a reengineering process, thus to simplify the structure and future maintenance of the Web Applications. The proposed method first identifies pairs of cloned pages by analyzing similarity at structure, content, and scripting code. Two pages are considered clones if their similarity is greater than a given threshold. Cloned pages are then grouped into clusters and the links connecting pages of two clusters are grouped too. An interconnection metric has been defined on the links between two clusters to express the effort required to reengineer them as well as to select the patterns of interest. To further reduce the comprehension effort, we filter out links and nodes of the clustered navigational schema that do not contribute to the identification of cloned navigational patterns. A tool supporting the proposed approach has been developed and validated in a case study

    Model-driven engineering for mobile robotic systems: a systematic mapping study

    Get PDF
    Mobile robots operate in various environments (e.g. aquatic, aerial, or terrestrial), they come in many diverse shapes and they are increasingly becoming parts of our lives. The successful engineering of mobile robotics systems demands the interdisciplinary collaboration of experts from different domains, such as mechanical and electrical engineering, artificial intelligence, and systems engineering. Research and industry have tried to tackle this heterogeneity by proposing a multitude of model-driven solutions to engineer the software of mobile robotics systems. However, there is no systematic study of the state of the art in model-driven engineering (MDE) for mobile robotics systems that could guide research or practitioners in finding model-driven solutions and tools to efficiently engineer mobile robotics systems. The paper is contributing to this direction by providing a map of software engineering research in MDE that investigates (1) which types of robots are supported by existing MDE approaches, (2) the types and characteristics of MRSs that are engineered using MDE approaches, (3) a description of how MDE approaches support the engineering of MRSs, (4) how existing MDE approaches are validated, and (5) how tools support existing MDE approaches. We also provide a replication package to assess, extend, and/or replicate the study. The results of this work and the highlighted challenges can guide researchers and practitioners from robotics and software engineering through the research landscape

    DAG-Based Attack and Defense Modeling: Don't Miss the Forest for the Attack Trees

    Full text link
    This paper presents the current state of the art on attack and defense modeling approaches that are based on directed acyclic graphs (DAGs). DAGs allow for a hierarchical decomposition of complex scenarios into simple, easily understandable and quantifiable actions. Methods based on threat trees and Bayesian networks are two well-known approaches to security modeling. However there exist more than 30 DAG-based methodologies, each having different features and goals. The objective of this survey is to present a complete overview of graphical attack and defense modeling techniques based on DAGs. This consists of summarizing the existing methodologies, comparing their features and proposing a taxonomy of the described formalisms. This article also supports the selection of an adequate modeling technique depending on user requirements
    corecore