265 research outputs found

    Unmanned systems interoperability standards

    Get PDF
    Over the past several years, there has been rapid growth in the development and employment of unmanned systems in military and civilian endeavors. Some military organizations have expressed concern that these systems are being fielded without sufficient capabilities to interoperate with existing systems. Despite recognition of this requirement, interoperability efforts remain diverse and disjointed across the United States and internationally. The Naval Postgraduate School (NPS), Monterey, California, was sponsored by the U.S. Office of the Secretary of Defense (OSD) Joint Ground Robotics Enterprise (JGRE) in Fiscal Year 2016 (FY16) to explore (1) enhancement of robotics education; (2) improved representation of robotic systems in combat simulations; and (3) interoperability standards for military robotics systems. This report discusses work performed in FY16 to identify current and emerging interoperability standards for unmanned systems, including interactions of robotic systems with command and control (C2) and simulation systems. The investigation included assessment of the applicability of standardization activities in the Simulation Interoperability Standards Organization (SISO) in its development of the Phase 1 Coalition Battle Management Language (C-BML) and currently in-progress Command and Control Systems - Simulation Systems Interoperation (C2SIM) standardization efforts. The report provides a recommended approach, standards, activities, and timetable for a cross-system communications roadmap.Secretary of Defense Joint Ground Robotics Enterprise, 3090 Defense Pentagon, Room 5C756, Washington, DC 20301Office of the Secretary of Defense Joint Ground Robotics Enterprise.Approved for public release; distribution is unlimited

    Advances in Remote Sensing of Flooding

    Get PDF
    With the publication of eight original research articles, four types of advances in the remote sensing of floods are achieved. The uncertainty of modeled outputs using precipitation datasets derived from in situ observations and remote sensors is further understood. With the terrestrial laser scanner and airborne light detection and ranging (LiDAR) coupled with high resolution optical and radar imagery, researchers improve accuracy levels in estimating the surface water height, extent, and flow of floods. The unmanned aircraft system (UAS) can be the game changer in the acquisition and application of remote sensing data. The UAS may fly everywhere and every time when a flood event occurs. With the development of urban structure maps, the flood risk and possible damage is well assessed. The flood mitigation plans and response activities become effective and efficient using geographic information system (GIS)-based urban flood vulnerability and risk maps

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Editorial

    Get PDF
    The special issue “Emerging Aerospace Technologies in Aerodynamics, Propulsion, and Materials” is published which covers the aerospace domain covering aerodynamics, propulsion, and materials used for aeronautical and aerospace domains. In this issue, the authors have focused on the articles related to experimental and computational work related to aircraft performance, aircraft stability and control, materials, and some other important areas. Most of the papers are based on Project Based Learning which is one of the research-oriented teaching-learning processes recently introduced in National Education Policy 2020 by the Government of India

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue President\u27s Message From the ACUTA CEO Legislative/Regulatory Update Technology Supports Learning at the University of Illinois App Development as a Learning Tool Death by Popcorn It\u27s a Bird...lt\u27s a Plane...lt\u27s a Drone! Beating the Cell Capacity Crunch Flipping the Classroom Saving College Dropouts Hybrid lT-The new Campus Landscape The George Washington University lntroduces CAAREN Flipping Classrooms to Change College STEM Teaching Project Fi-the Wi-Fi-First Cell Phon

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue President\u27s Message From the ACUTA CEO Legislative/Regulatory Update Technology Supports Learning at the University of Illinois App Development as a Learning Tool Death by Popcorn It\u27s a Bird...lt\u27s a Plane...lt\u27s a Drone! Beating the Cell Capacity Crunch Flipping the Classroom Saving College Dropouts Hybrid lT-The new Campus Landscape The George Washington University lntroduces CAAREN Flipping Classrooms to Change College STEM Teaching Project Fi-the Wi-Fi-First Cell Phon

    Air Force Institute of Technology Research Report 2020

    Get PDF
    This Research Report presents the FY20 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document

    Aircraft Modeling and Simulation

    Get PDF
    Various aerodynamics, structural dynamics, and control design and experimental studies are presented with the aim of advancing green and morphing aircraft research. The results obtained with an in-house CFD code are compared and validated with those of two NASA codes. The aerodynamical model of the UAS-S45 morphing wing as well as the structural model of a morphing winglet are presented. A new design methodology for oleo-pneumatic landing gear drop impact dynamics is presented as well as its experimental validation. The design of a nonlinear dynamic inversion (NDI)-based disturbance rejection control on a tailless aircraft is presented, including its validation using wind tunnel tests

    On the Integration of Unmanned Aerial Vehicles into Public Airspace

    Get PDF
    Unmanned Aerial Vehicles will soon be integrated in the airspace and start serving us in various capacities such as package delivery, surveillance, search and rescue missions, inspection of infrastructure, precision agriculture, and cinematography. In this thesis, motivated by the challenges this new era brings about, we design a layered architecture called Internet of Drones (IoD). In this architecture, we propose a structure for the traffic in the airspace as well as the interaction between the components of our system such as unmanned aerial vehicles and service providers. We envision the minimal features that need to be implemented in various layers of the architecture, both on the Unmanned Aerial Vehicle (UAV)'s side and on the service providers' side. We compare and contrast various approaches in three existing networks, namely the Internet, the cellular network, and the air traffic control network and discuss how they relate to IoD. As a tool to aid in enabling integration of drones in the airspace, we create a traffic flow model. This model will assign velocities to drones according to the traffic conditions in a stable way as well as help to study the formation of congestion in the airspace. We take the novel problem posed by the 3D nature of UAV flights as opposed to the 2D nature of road vehicles movements and create a fitting traffic flow model. In this model, instead of structuring our model in terms of roads and lanes as is customary for ground vehicles, we structure it in terms of channels, density and capacities. The congestion is formulated as the perceived density given the capacity and the velocity of vehicles will be set accordingly. This view removes the need for a lane changing model and its complexity which we believe should be abstracted away even for the ground vehicles as it is not fundamentally related to the longitudinal movements of vehicles. Our model uses a scalar capacity parameter and can exhibit both passing and blocking behaviors. Furthermore, our model can be solved analytically in the blocking regime and piece-wise analytically solved when in the passing regime. Finally, it is not possible to integrate UAVs into the airspace without some mechanism for coordination or in other words scheduling. We define a new scheduling problem in this regard that we call Vehicle Scheduling Problem (VSP). We prove NP-hardness for all the commonly used objective functions in the context of Job Shop Scheduling Problem (JSP). Then for the number of missed deadlines as our objective function, we give a Mixed Integer Programming (MIP) formulation of VSP. We design a heuristic algorithm and compare the quality of the schedules created for small instances with the exact solution to the MIP instance. For larger instances, these comparisons are made with a baseline algorithm
    • …
    corecore