6,205 research outputs found

    Special issue on smart interactions in cyber-physical systems: Humans, agents, robots, machines, and sensors

    Get PDF
    In recent years, there has been increasing interaction between humans and non‐human systems as we move further beyond the industrial age, the information age, and as we move into the fourth‐generation society. The ability to distinguish between human and non‐human capabilities has become more difficult to discern. Given this, it is common that cyber‐physical systems (CPSs) are rapidly integrated with human functionality, and humans have become increasingly dependent on CPSs to perform their daily routines.The constant indicators of a future where human and non‐human CPSs relationships consistently interact and where they allow each other to navigate through a set of non‐trivial goals is an interesting and rich area of research, discovery, and practical work area. The evidence of con- vergence has rapidly gained clarity, demonstrating that we can use complex combinations of sensors, artificial intelli- gence, and data to augment human life and knowledge. To expand the knowledge in this area, we should explain how to model, design, validate, implement, and experiment with these complex systems of interaction, communication, and networking, which will be developed and explored in this special issue. This special issue will include ideas of the future that are relevant for understanding, discerning, and developing the relationship between humans and non‐ human CPSs as well as the practical nature of systems that facilitate the integration between humans, agents, robots, machines, and sensors (HARMS).Fil: Kim, Donghan. Kyung Hee University;Fil: Rodriguez, Sebastian Alberto. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Matson, Eric T.. Purdue University; Estados UnidosFil: Kim, Gerard Jounghyun. Korea University

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Guest Editorial Special Issue on Graph-Powered Machine Learning for Internet of Things

    Get PDF
    Internet of Things (IoT) refers to an ecosystem where applications and services are driven by data collected from devices interacting with each other and the physical world. Although IoT has already brought spectacular benefits to human society, the progress is actually not as fast as expected. From network structures to control flow graphs, IoT naturally generates an unprecedented volume of graph data continuously, which stimulates fertilization and making use of advanced graph-powered methods on the diverse, dynamic, and large-scale graph IoT data

    A new trend for knowledge-based decision support systems design

    Get PDF
    Knowledge-based decision support systems (KBDSS) have evolved greatly over the last few decades. The key technologies underpinning the development of KBDSS can be classified into three categories: technologies for knowledge modelling and representation, technologies for reasoning and inference and web-based technologies. In the meantime, service systems have emerged and become increasingly important to value adding activities in the current knowledge economy. This paper provides a review on the recent advances in the three types of technologies, as well as the main application domains of KBDSS as service systems. Based on the examination of literature, future research directions are recommended for the development of KBDSS in general and in particular to support decision-making in service industry

    Leveraging Communicating UAVs for Emergency Vehicle Guidance in Urban Areas

    Get PDF
    International audienceThe response time to emergency situations in urban areas is considered as a crucial key in limiting material damage or even saving human lives. Thanks to their "bird's eye view" and their flexible mobility, Unmanned Aerial Vehicles (UAVs) can be a promising candidate for several vital applications. Under these perspectives, we investigate the use of communicating UAVs to detect any incident on the road, provide rescue teams with their exact locations, and plot the fastest path to intervene, while considering the constraints of the roads. To efficiently inform the rescue services, a robust routing scheme is introduced to ensure a high level of communication stability based on an efficient backbone, while considering both the high mobility and the restricted energy capacity of UAVs. This allows both predicting any routing path breakage prior to its occurrence, and carrying out a balanced energy consumption among UAVs. To ensure a rapid intervention by rescue teams, UAVs communicate in an ad hoc fashion with existing vehicles on the ground to estimate the fluidity of the roads. Our system is implemented and evaluated through a series of experiments. The reported results show that each part of the system reliably succeeds in achieving its planned objective

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    U2RV: UAV-assisted reactive routing protocol for VANETs

    Get PDF
    When it comes to keeping the data routing robust and effective in Vehicular Ad hoc Networks (VANETs), stable and durable connectivity constitutes the keystone to ensure successful point-to-point communication. Since VANETs can comprise all kinds of mobile vehicles moving and changing direction frequently, this may result in frequent link failures and network partitions. Moreover, when VANETs are deployed in a city environment, another problem arises, that is, the existing obstructions (e.g., buildings, trees, hoppers, etc.) preventing the line-of-sight between vehicles, thus degrading wireless transmissions. Therefore, it is more complicated to design a routing technique that adapts to frequent changes in the topology. In order to settle all these problems, in this work, we design a flooding scheme that automatically reacts at each topology variation while overcoming the present obstacles while exchanging data in ad hoc mode with drones that are commonly called Unmanned Aerial Vehicles (UAVs). Also, the aim of this work is to explore well-regulated routing paths providing a long lifetime connectivity based on the amount of traffic and the expiration time of each discovered path, respectively. A set of experiments is carried out using simulation, and the outcomes are confronted with similar protocols based on a couple of metrics. The results clearly show that the assistance of UAVs to vehicles is capable to provide high delivery ratios and low delivery delays while efficiently extending the network connectivity
    corecore