454 research outputs found

    Modular architecture providing convergent and ubiquitous intelligent connectivity for networks beyond 2030

    Get PDF
    The transition of the networks to support forthcoming beyond 5G (B5G) and 6G services introduces a number of important architectural challenges that force an evolution of existing operational frameworks. Current networks have introduced technical paradigms such as network virtualization, programmability and slicing, being a trend known as network softwarization. Forthcoming B5G and 6G services imposing stringent requirements will motivate a new radical change, augmenting those paradigms with the idea of smartness, pursuing an overall optimization on the usage of network and compute resources in a zero-trust environment. This paper presents a modular architecture under the concept of Convergent and UBiquitous Intelligent Connectivity (CUBIC), conceived to facilitate the aforementioned transition. CUBIC intends to investigate and innovate on the usage, combination and development of novel technologies to accompany the migration of existing networks towards Convergent and Ubiquitous Intelligent Connectivity (CUBIC) solutions, leveraging Artificial Intelligence (AI) mechanisms and Machine Learning (ML) tools in a totally secure environment

    Blockchain enabled industrial Internet of Things technology

    Get PDF
    The emerging blockchain technology shows promising potential to enhance industrial systems and the Internet of things (IoT) by providing applications with redundancy, immutable storage, and encryption. In the past a few years, many more applications in industrial IoT (IIoT) have emerged and the blockchain technologies have attracted huge amounts of attention from both industrial and academic researchers. In this paper we address the integration of blockchain and IIoT from the industrial prospective. A blockchain enabled IIoT framework is introduced and involved fundamental techniques are presented. Moreover, main applications and key challenges are addressed. A comprehensive analysis for the most recent research trends and open issues is provided associated with the blockchain enabled IIoT

    Fog based intelligent transportation big data analytics in the internet of vehicles environment: motivations, architecture, challenges, and critical issues

    Get PDF
    The intelligent transportation system (ITS) concept was introduced to increase road safety, manage traffic efficiently, and preserve our green environment. Nowadays, ITS applications are becoming more data-intensive and their data are described using the '5Vs of Big Data'. Thus, to fully utilize such data, big data analytics need to be applied. The Internet of vehicles (IoV) connects the ITS devices to cloud computing centres, where data processing is performed. However, transferring huge amount of data from geographically distributed devices creates network overhead and bottlenecks, and it consumes the network resources. In addition, following the centralized approach to process the ITS big data results in high latency which cannot be tolerated by the delay-sensitive ITS applications. Fog computing is considered a promising technology for real-time big data analytics. Basically, the fog technology complements the role of cloud computing and distributes the data processing at the edge of the network, which provides faster responses to ITS application queries and saves the network resources. However, implementing fog computing and the lambda architecture for real-time big data processing is challenging in the IoV dynamic environment. In this regard, a novel architecture for real-time ITS big data analytics in the IoV environment is proposed in this paper. The proposed architecture merges three dimensions including intelligent computing (i.e. cloud and fog computing) dimension, real-time big data analytics dimension, and IoV dimension. Moreover, this paper gives a comprehensive description of the IoV environment, the ITS big data characteristics, the lambda architecture for real-time big data analytics, several intelligent computing technologies. More importantly, this paper discusses the opportunities and challenges that face the implementation of fog computing and real-time big data analytics in the IoV environment. Finally, the critical issues and future research directions section discusses some issues that should be considered in order to efficiently implement the proposed architecture

    Innovation in manufacturing through digital technologies and applications: Thoughts and Reflections on Industry 4.0

    Get PDF
    The rapid pace of developments in digital technologies offers many opportunities to increase the efficiency, flexibility and sophistication of manufacturing processes; including the potential for easier customisation, lower volumes and rapid changeover of products within the same manufacturing cell or line. A number of initiatives on this theme have been proposed around the world to support national industries under names such as Industry 4.0 (Industrie 4.0 in Germany, Made-in-China in China and Made Smarter in the UK). This book presents an overview of the state of art and upcoming developments in digital technologies pertaining to manufacturing. The starting point is an introduction on Industry 4.0 and its potential for enhancing the manufacturing process. Later on moving to the design of smart (that is digitally driven) business processes which are going to rely on sensing of all relevant parameters, gathering, storing and processing the data from these sensors, using computing power and intelligence at the most appropriate points in the digital workflow including application of edge computing and parallel processing. A key component of this workflow is the application of Artificial Intelligence and particularly techniques in Machine Learning to derive actionable information from this data; be it real-time automated responses such as actuating transducers or informing human operators to follow specified standard operating procedures or providing management data for operational and strategic planning. Further consideration also needs to be given to the properties and behaviours of particular machines that are controlled and materials that are transformed during the manufacturing process and this is sometimes referred to as Operational Technology (OT) as opposed to IT. The digital capture of these properties and behaviours can then be used to define so-called Cyber Physical Systems. Given the power of these digital technologies it is of paramount importance that they operate safely and are not vulnerable to malicious interference. Industry 4.0 brings unprecedented cybersecurity challenges to manufacturing and the overall industrial sector and the case is made here that new codes of practice are needed for the combined Information Technology and Operational Technology worlds, but with a framework that should be native to Industry 4.0. Current computing technologies are also able to go in other directions than supporting the digital ‘sense to action’ process described above. One of these is to use digital technologies to enhance the ability of the human operators who are still essential within the manufacturing process. One such technology, that has recently become accessible for widespread adoption, is Augmented Reality, providing operators with real-time additional information in situ with the machines that they interact with in their workspace in a hands-free mode. Finally, two linked chapters discuss the specific application of digital technologies to High Pressure Die Casting (HDPC) of Magnesium components. Optimizing the HPDC process is a key task for increasing productivity and reducing defective parts and the first chapter provides an overview of the HPDC process with attention to the most common defects and their sources. It does this by first looking at real-time process control mechanisms, understanding the various process variables and assessing their impact on the end product quality. This understanding drives the choice of sensing methods and the associated smart digital workflow to allow real-time control and mitigation of variation in the identified variables. Also, data from this workflow can be captured and used for the design of optimised dies and associated processes

    The concept of collaborative engineering: a systematic literature review

    Get PDF
    Collaborative engineering is not a new subject but it assumes a new importance in the Industry 4.0 (I4.0). There are other concepts frequently mismatched with collaboration. Thus, the main objective of this paper is to put forward a collaborative engineering concept, along its sub concepts, supported by an extensive systematic literature review. A critical analysis and discussion about the fundamental importance of learning, and the central human role in collaboration, in the I4.0, is presented, based on the main insights brought through the literature review. This study also enables to realize about the importance of collaboration in the current digitalization era, along with the importance of recent approaches and technology for enabling or promoting collaboration. Main current practices of human centered and autonomous machine-machine approaches and applications of collaboration in engineering, namely in manufacturing and management, are presented, along with main difficulties and further open research opportunities on collaboration.This work was supported by the Fundação para a Ciência e a Tecnologia [UIDB/00319/2020, UIDB/50014/2020, and EXPL/EME-SIS/1224/2021]

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure
    corecore