790 research outputs found

    On the Role of Affective Properties in Hedonic and Discriminant Haptic Systems

    Get PDF
    Common haptic devices are designed to effectively provide kinaesthetic and/or cutaneous discriminative inputs to the users by modulating some physical parameters. However, in addition to this behavior, haptic stimuli were proven to convey also affective inputs to the brain. Nevertheless, such affective properties of touch are often disregarded in the design (and consequent validation) of haptic displays. In this paper we present some preliminary experimental evidences about how emotional feelings, intrinsically present while interacting with tactile displays, can be assessed. We propose a methodology based on a bidimensional model of elicited emotions evaluated by means of simple psychometric tests and statistical inference. Specifically, affective dimensions are expressed in terms of arousal and valence, which are quantified through two simple one-question psychometric tests, whereas statistical inference is based on rank-based non-parametric tests. In this work we consider two types of haptic systems: (i) a softness display, FYD-2, which was designed to convey purely discriminative softness haptic stimuli and (ii) a system designed to convey affective caress-like stimuli (by regulating the velocity and the strength of the “caress”) on the user forearm. Gender differences were also considered. In both devices, the affective component clearly depends on the stimuli and it is gender-related. Finally, we discuss how such outcomes might be profitably used to guide the design and the usage of haptic devices, in order to take into account also the emotional component, thus improving system performance

    Multimodal human hand motion sensing and analysis - a review

    Get PDF

    Robots in Industry. Past,present and future of a growing collaboration with humans

    Get PDF
    Robots have been part of automation systems for a very long time, and in public perception, they are often synonymous with automation and industrial revolution perse. Fueled by Industry 4.0 and Internet of Things (IoT) concepts as well as by new software technologies, the field of robotics in industry is currently undergoing a revolution on its own. This article gives an overview of the evolution of robotics from its beginnings to recent trends like collaborative robotics, autonomous robots, and human- robot interaction. Particular attention is devoted to the deep changes of the last decades, from the traditional industrial scenario based on isolated robotic cells up to the most recent coworking and collaborative robots. The role of robotics in the Industry 4.0 framework is analyzed, and the relationships with industrial communications and software technologies are also discussed. Some future directions for robotics are envisaged, focusing on the contributions coming from new materials, sensors, actuators, and technologies. Open issues are highlighted as well as the main barriers that currently limit the deployment of industrial robots in the small and medium enterprise (SME) world

    Data-Driven Understanding of Smart Service Systems Through Text Mining

    Get PDF
    Smart service systems are everywhere, in homes and in the transportation, energy, and healthcare sectors. However, such systems have yet to be fully understood in the literature. Given the widespread applications of and research on smart service systems, we used text mining to develop a unified understanding of such systems in a data-driven way. Specifically, we used a combination of metrics and machine learning algorithms to preprocess and analyze text data related to smart service systems, including text from the scientific literature and news articles. By analyzing 5,378 scientific articles and 1,234 news articles, we identify important keywords, 16 research topics, 4 technology factors, and 13 application areas. We define ???smart service system??? based on the analytics results. Furthermore, we discuss the theoretical and methodological implications of our work, such as the 5Cs (connection, collection, computation, and communications for co-creation) of smart service systems and the text mining approach to understand service research topics. We believe this work, which aims to establish common ground for understanding these systems across multiple disciplinary perspectives, will encourage further research and development of modern service systems

    An adaptive and flexible brain energized full body exoskeleton with IoT edge for assisting the paralyzed patients

    Get PDF
    The paralyzed population is increasing worldwide due to stroke, spinal code injury, post-polio, and other related diseases. Different assistive technologies are used to improve the physical and mental health of the affected patients. Exoskeletons have emerged as one of the most promising technology to provide movement and rehabilitation for the paralyzed. But exoskeletons are limited by the constraints of weight, flexibility, and adaptability. To resolve these issues, we propose an adaptive and flexible Brain Energized Full Body Exoskeleton (BFBE) for assisting the paralyzed people. This paper describes the design, control, and testing of BFBE with 15 degrees of freedom (DoF) for assisting the users in their daily activities. The flexibility is incorporated into the system by a modular design approach. The brain signals captured by the Electroencephalogram (EEG) sensors are used for controlling the movements of BFBE. The processing happens at the edge, reducing delay in decision making and the system is further integrated with an IoT module that helps to send an alert message to multiple caregivers in case of an emergency. The potential energy harvesting is used in the system to solve the power issues related to the exoskeleton. The stability in the gait cycle is ensured by using adaptive sensory feedback. The system validation is done by using six natural movements on ten different paralyzed persons. The system recognizes human intensions with an accuracy of 85%. The result shows that BFBE can be an efficient method for providing assistance and rehabilitation for paralyzed patients. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramanian” is provided in this record*

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    Human-Robot Team Interaction Through Wearable Haptics for Cooperative Manipulation

    Get PDF
    The interaction of robot teams and single human in teleoperation scenarios is beneficial in cooperative tasks, for example the manipulation of heavy and large objects in remote or dangerous environments. The main control challenge of the interaction is its asymmetry, arising because robot teams have a relatively high number of controllable degrees of freedom compared to the human operator. Therefore, we propose a control scheme that establishes the interaction on spaces of reduced dimensionality taking into account the low number of human command and feedback signals imposed by haptic devices. We evaluate the suitability of wearable haptic fingertip devices for multi-contact teleoperation in a user study. The results show that the proposed control approach is appropriate for human-robot team interaction and that the wearable haptic fingertip devices provide suitable assistance in cooperative manipulation tasks

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE
    corecore