6 research outputs found

    Guest Editorial Microassembly for Manufacturing at Small Scales.

    No full text
    International audienceMICROELECTRONICS brought an information revolution through integrating a vast number of microscopic transistors. Much progress has beenmade inminiaturization and integration of MEMS or MOEMS (Micro-(Opto-)Electro-Mechanical-Systems to produce accelerometers, inkjet printer heads, micro-mirrors, micro-relays, and pressure sensors. A new generation of MEMS is rapidly moving toward highly integrated, more complex heterogeneous microsystems with increased functionalities. Many limitations remain that are extremelydifficult to overcome, especially concerning processes and materials incompatibilities. microassembly is a natural and powerful approach to overcome these processes incompatibilities and to facilitate complex, heterogeneous, 3D, or out of plane integration. By using basic micro-scale components, microassembly constitutes a new alternative of Microsystems production that may lead to cost savings and shorter development cycle times. Because of the size of the components and of the required precision, automation is needed

    Microrobotique et Micromécatronique pour la Réalisation de Tâches de Micro-Assemblage Complexes et Précises.

    Get PDF
    Ce document présente une synthèse de mes contributions scientifiques aux domaines de la microrobotique et de la micromécatronique ainsi que des transferts effectués, tant à destination de l’industrie que de l’enseignement. Les travaux conduits sont orientés vers la réalisation de tâches de micro-assemblage complexes, précises et automatisées par approche microrobotique et sont plus particulièrement appliqués aux MOEMS.L’échelle micrométrique considérée induit de nombreuses spécificités qui se traduisent par un déficit notable de connaissances du comportement des systèmes à cette échelle. Pour cela, une première partie des travaux est dédiée à l’étude et à la modélisation multiphysique des systèmes microrobotiques et micromécatroniques. Cette connaissance a conduit, dans une seconde partie des travaux, à la proposition de nouveaux principes de mesure et d’actionnement mais également au développement de microsystèmes complexes, instrumentés et intégrés (micro-banc-optique, micropince, plateformes compliantes). Enfin, des lois de commandes et des stratégies d’assemblage originales ont été proposées notamment une commande dynamique hybride force-position combinant une commande hybride externe et une commande en impédance. Celle-ci permet de maîtriser la dynamique des transitions contact/non-contact critique à l’échelle micrométrique mais également d’automatiser des processus de micro-assemblage complexes. L’ensemble de ces travaux ont fait l’objet de validations expérimentales permettant de quantifier précisément les performances obtenues (exactitude de positionnement, temps de cycle, robustesse…). Les perspectives de ces travaux portent sur la proposition de systèmes microrobotiques et micromécatroniques compacts et intégrés utiles au micro-assemblage haute dynamique ainsi qu’à l’assemblage de composants nanophotoniques

    Kinematics, Structural Mechanics, and Design of Origami Structures with Smooth Folds

    Get PDF
    Origami provides novel approaches to the fabrication, assembly, and functionality of engineering structures in various fields such as aerospace, robotics, etc. With the increase in complexity of the geometry and materials for origami structures that provide engineering utility, computational models and design methods for such structures have become essential. Currently available models and design methods for origami structures are generally limited to the idealization of the folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures having non-negligible thickness or maximum curvature at the folds restricted by material limitations. Thus, for general structures, creased folds of merely zeroth-order geometric continuity are not appropriate representations of structural response and a new approach is needed. The first contribution of this dissertation is a model for the kinematics of origami structures having realistic folds of non-zero surface area and exhibiting higher-order geometric continuity, here termed smooth folds. The geometry of the smooth folds and the constraints on their associated kinematic variables are presented. A numerical implementation of the model allowing for kinematic simulation of structures having arbitrary fold patterns is also described. Examples illustrating the capability of the model to capture realistic structural folding response are provided. Subsequently, a method for solving the origami design problem of determining the geometry of a single planar sheet and its pattern of smooth folds that morphs into a given three-dimensional goal shape, discretized as a polygonal mesh, is presented. The design parameterization of the planar sheet and the constraints that allow for a valid pattern of smooth folds and approximation of the goal shape in a known folded configuration are presented. Various testing examples considering goal shapes of diverse geometries are provided. Afterwards, a model for the structural mechanics of origami continuum bodies with smooth folds is presented. Such a model entails the integration of the presented kinematic model and existing plate theories in order to obtain a structural representation for folds having non-zero thickness and comprised of arbitrary materials. The model is validated against finite element analysis. The last contribution addresses the design and analysis of active material-based self-folding structures that morph via simultaneous folding towards a given three-dimensional goal shape starting from a planar configuration. Implementation examples including shape memory alloy (SMA)-based self-folding structures are provided

    GSI Scientific Report 2015 / GSI Report 2016-1

    Get PDF
    corecore