58 research outputs found

    Millimeter-wave Wireless LAN and its Extension toward 5G Heterogeneous Networks

    Full text link
    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.Comment: 18 pages, 24 figures, accepted, invited paper

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Classification of Malaria-Infected Cells Using Deep Convolutional Neural Networks

    Get PDF
    Malaria is a life-threatening disease caused by parasites that are transmitted to people through the bites of infected mosquitoes. Automation of the diagnosis process will enable accurate diagnosis of the disease and hence holds the promise of delivering reliable health-care to resource-scarce areas. Machine learning technologies have been used for automated diagnosis of malaria. We present some of our recent progresses on highly accurate classification of malaria-infected cells using deep convolutional neural networks. First, we describe image processing methods used for segmentation of red blood cells from wholeslide images. We then discuss the procedures of compiling a pathologists-curated image dataset for training deep neural network, as well as data augmentation methods used to significantly increase the size of the dataset, in light of the overfitting problem associated with training deep convolutional neural networks. We will then compare the classification accuracies obtained by deep convolutional neural networks through training, validating, and testing with various combinations of the datasets. These datasets include the original dataset and the significantly augmented datasets, which are obtained using direct interpolation, as well as indirect interpolation using automatically extracted features provided by stacked autoencoders. This chapter ends with a discussion of further research

    Wireless powered cooperation-assisted mobile edge computing

    Get PDF
    This paper studies a mobile edge computing (MEC) system in which two mobile devices are energized by the wireless power transfer (WPT) from an access point (AP) and they can offload part or all of their computation-intensive latency-critical tasks to the AP connected with an MEC server or an edge cloud. This harvest-then-offload protocol operates in an optimized time-division manner. To overcome the doubly near-far effect for the farther mobile device, cooperative communications in the form of relaying via the nearer mobile device is considered for offloading. Our aim is to minimize the AP's total transmit energy subject to the constraints of the computational tasks. We illustrate that the optimization is equivalent to a min-max problem, which can be optimally solved by a two-phase method. The first phase obtains the optimal offloading decisions by solving a sum-energy-saving maximization problem for given an energy transmit power. In the second phase, the optimal minimum energy transmit power is obtained by a bisection search method. Numerical results demonstrate that the optimized MEC system utilizing cooperation has significant performance improvement over systems without cooperation

    Close2U: An App for Monitoring Cancer Patients with Enriched Information from Interaction Patterns

    Get PDF
    The management of cancer patients'' symptoms in doctor consultations is a cornerstone in clinical care, this process being fundamental for the follow-up of the evolution of these. This article presents an application that allows collecting periodically and systematically the data of cancer patients and their visualization by the medical team. In this article, we made the analysis, design, implementation, and final evaluation by analyzing the correlation of this data collection with interaction patterns to determine how the user information can be enriched with information from the interaction patterns. We have followed an agile methodology based on the iterative and incremental development of successive prototypes with increased fidelity, where the requirements and solutions have evolved over time according to the need and assessments made. The comprehensive analysis of the patient''s condition allowed us to perform a first analysis of the correlation of the states of patients concerning mood, sleeping quality, and pain with the interaction patterns. A future goal of this project is to optimize the process of data collection and the analysis of information. Another future goal is to reduce the time dedicated to reporting the evolution of symptoms in face-to-face consultations and to help professionals in analyzing the patient''s evolution even in the period that has not been attended in person

    Quantification of the resilience of primary care networks by stress testing the health care system

    Get PDF
    There are practically no quantitative tools for understanding how much stress a health care system can absorb before it loses its ability to provide care. We propose to measure the resilience of health care systems with respect to changes in the density of primary care providers. We develop a computational model on a 1-to-1 scale for a countrywide primary care sector based on patient-sharing networks. Nodes represent all primary care providers in a country; links indicate patient flows between them. The removal of providers could cause a cascade of patient displacements, as patients have to find alternative providers. The model is calibrated with nationwide data from Austria that includes almost all primary care contacts over 2 y. We assign 2 properties to every provider: the “CareRank” measures the average number of displacements caused by a provider’s removal (systemic risk) as well as the fraction of patients a provider can absorb when others default (systemic benefit). Below a critical number of providers, large-scale cascades of patient displacements occur, and no more providers can be found in a given region. We quantify regional resilience as the maximum fraction of providers that can be removed before cascading events prevent coverage for all patients within a district. We find considerable regional heterogeneity in the critical transition point from resilient to nonresilient behavior. We demonstrate that health care resilience cannot be quantified by physician density alone but must take into account how networked systems respond and restructure in response to shocks. The approach can identify systemically relevant providers

    Analysis of Brain Imaging Data for the Detection of Early Age Autism Spectrum Disorder Using Transfer Learning Approaches for Internet of Things

    Get PDF
    In recent years, advanced magnetic resonance imaging (MRI) methods including functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) have indicated an increase in the prevalence of neuropsychiatric disorders such as autism spectrum disorder (ASD), effects one out of six children worldwide. Data driven techniques along with medical image analysis techniques, such as computer-assisted diagnosis (CAD), benefiting from deep learning. With the use of artificial intelligence (AI) and IoT-based intelligent approaches, it would be convenient to support autistic children to adopt the new atmospheres. In this paper, we classify and represent learning tasks of the most powerful deep learning network such as convolution neural network (CNN) and transfer learning algorithm on a combination of data from autism brain imaging data exchange (ABIDE I and ABIDE II) datasets. Due to their four-dimensional nature (three spatial dimensions and one temporal dimension), the resting state-fMRI (rs-fMRI) data can be used to develop diagnostic biomarkers for brain dysfunction. ABIDE is a collaboration of global scientists, where ABIDE-I and ABIDE-II consists of 1112 rs-fMRI datasets from 573 typical control (TC) and 539 autism individuals, and 1114 rs-fMRI from 521 autism and 593 typical control individuals respectively, which were collected from 17 different sites. Our proposed optimized version of CNN achieved 81.56% accuracy. This outperforms prior conventional approaches presented only on the ABIDE I datasets

    CAT-CAD: A Computer-Aided Diagnosis Tool for Cataplexy

    Get PDF
    Narcolepsy with cataplexy is a severe lifelong disorder characterized, among others, by sudden loss of bilateral face muscle tone triggered by emotions (cataplexy). A recent approach for the diagnosis of the disease is based on a completely manual analysis of video recordings of patients undergoing emotional stimulation made on-site by medical specialists, looking for specific facial behavior motor phenomena. We present here the CAT-CAD tool for automatic detection of cataplexy symptoms, with the double aim of (1) supporting neurologists in the diagnosis/monitoring of the disease and (2) facilitating the experience of patients, allowing them to conduct video recordings at home. CAT-CAD includes a front-end medical interface (for the playback/inspection of patient recordings and the retrieval of videos relevant to the one currently played) and a back-end AI-based video analyzer (able to automatically detect the presence of disease symptoms in the patient recording). Analysis of patients’ videos for discovering disease symptoms is based on the detection of facial landmarks, and an alternative implementation of the video analyzer, exploiting deep-learning techniques, is introduced. Performance of both approaches is experimentally evaluated using a benchmark of real patients’ recordings, demonstrating the effectiveness of the proposed solutions

    The LumberJack, November 01, 2006

    Get PDF
    The student newspaper of Humboldt State University.https://digitalcommons.humboldt.edu/studentnewspaper/1345/thumbnail.jp
    • …
    corecore