9,718 research outputs found

    Guest editorial: Time-critical communication and computation for intelligent vehicular networks

    Get PDF
    Vehicular networks are expected to empower auto mated driving and intelligent transportation via vehicle-to-everything (V2X) communications and edge/cloud-assisted computation, and in the meantime Cellular V2X (C-V2X) is gaining wide support from the global industrial ecosystem. The 5G NR-V2X technology is the evolution of LTE-V2X, which is expected to provide ultra-Reliable and Low-Latency Communications (uRLLC) with 1ms latency and 99.999% reliability. Nevertheless, vehicular networks still face great challenges in supporting many emerging time-critical applications, which comprise sensing, communication and computation as closed-loops

    The future of European communication and transportation research: a research agenda

    Get PDF
    Our mobility system is changing rapidly. We are at the crossroad of major changes in the way we travel and deliver goods. Research agendas are adapting to this changed environment with new challenges and opportunities. This paper presents a research agenda for the future of transportation research structured along eight cluster topics of the Network on European Communication and Transport Activities Research (NECTAR).  The research agenda firstly highlights the growing complexity and need for multi- and interdisciplinary transportation research. Secondly, sustainability needs to be addressed in transportation research in its full meaning, including relationships between policy-making investigations and environmental and equity effects. Thirdly, ICTs and digitalisation, the development of (shared) autonomous vehicles and shared mobility will have profound impacts on economies and spatial interactions all-around the world, and availability of high resolution spatial and transportation data. Digitalisation generates many new research opportunities but also give rise to new concerns about privacy, safety, equity and public health

    Milestones in Autonomous Driving and Intelligent Vehicles Part \uppercase\expandafter{\romannumeral1}: Control, Computing System Design, Communication, HD Map, Testing, and Human Behaviors

    Get PDF
    Interest in autonomous driving (AD) and intelligent vehicles (IVs) is growing at a rapid pace due to the convenience, safety, and economic benefits. Although a number of surveys have reviewed research achievements in this field, they are still limited in specific tasks and lack systematic summaries and research directions in the future. Our work is divided into 3 independent articles and the first part is a Survey of Surveys (SoS) for total technologies of AD and IVs that involves the history, summarizes the milestones, and provides the perspectives, ethics, and future research directions. This is the second part (Part \uppercase\expandafter{\romannumeral1} for this technical survey) to review the development of control, computing system design, communication, High Definition map (HD map), testing, and human behaviors in IVs. In addition, the third part (Part \uppercase\expandafter{\romannumeral2} for this technical survey) is to review the perception and planning sections. The objective of this paper is to involve all the sections of AD, summarize the latest technical milestones, and guide abecedarians to quickly understand the development of AD and IVs. Combining the SoS and Part \uppercase\expandafter{\romannumeral2}, we anticipate that this work will bring novel and diverse insights to researchers and abecedarians, and serve as a bridge between past and future.Comment: 18 pages, 4 figures, 3 table

    Sensing and connection systems for assisted and autonomous driving and unmanned vehicles

    Get PDF
    The special issue, “Sensors, Wireless Connectivity and Systems for Autonomous Vehicles and Smart Mobility” on MDPI Sensors presents 12 accepted papers, with authors from North America, Asia, Europe and Australia, related to the emerging trends in sensing and navigation systems (i.e., sensors plus related signal processing and understanding techniques in multi-agent and cooperating scenarios) for autonomous vehicles, including also unmanned aerial and underwater ones

    Dynamic Underwater Glider Network for Environmental Field Estimation

    Get PDF
    A coordinated dynamic sensor network of autonomous underwater gliders to estimate three-dimensional time-varying environmental fields is proposed and tested. Integration with a network of surface relay nodes and asynchronous consensus are used to distribute local information and achieve the global field estimate. Field spatial sparsity is considered, and field samples are acquired by compressive sensing devices. Tests on simulated and real data demonstrate the feasibility of the approach with relative error performance within 10

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    A business and legislative perspective of V2X and mobility applications in 5G networks

    Get PDF
    Vehicle-to-everything (V2X) communication is a powerful concept that not only ensures public safety (e.g., by avoiding road accidents) but also offers many economic benefits (e.g., by optimizing the macroscopic behavior of the traffic across an area). On the one hand, V2X communication brings new business opportunities for many stakeholders, such as vehicle manufacturers, retailers, Mobile Network Operators (MNOs), V2X service providers, and governments. On the other hand, the convergence of these stakeholders to a common platform possesses many technical and business challenges. In this article, we identify the issues and challenges faced by V2X communications, while focusing on the business models. We propose different solutions to potentially resolve the identified challenges in the framework of 5G networks and propose a high-level hierarchy of a potential business model for a 5G-based V2X ecosystem. Moreover, we provide a concise overview of the legislative status of V2X communications across different regions in the world

    Activity Report 2020 : Automatic Control Lund University

    Get PDF
    corecore