26 research outputs found

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    Recent Advances in Neural Recording Microsystems

    Get PDF
    The accelerating pace of research in neuroscience has created a considerable demand for neural interfacing microsystems capable of monitoring the activity of large groups of neurons. These emerging tools have revealed a tremendous potential for the advancement of knowledge in brain research and for the development of useful clinical applications. They can extract the relevant control signals directly from the brain enabling individuals with severe disabilities to communicate their intentions to other devices, like computers or various prostheses. Such microsystems are self-contained devices composed of a neural probe attached with an integrated circuit for extracting neural signals from multiple channels, and transferring the data outside the body. The greatest challenge facing development of such emerging devices into viable clinical systems involves addressing their small form factor and low-power consumption constraints, while providing superior resolution. In this paper, we survey the recent progress in the design and the implementation of multi-channel neural recording Microsystems, with particular emphasis on the design of recording and telemetry electronics. An overview of the numerous neural signal modalities is given and the existing microsystem topologies are covered. We present energy-efficient sensory circuits to retrieve weak signals from neural probes and we compare them. We cover data management and smart power scheduling approaches, and we review advances in low-power telemetry. Finally, we conclude by summarizing the remaining challenges and by highlighting the emerging trends in the field

    A pW-Power Hz-Range Oscillator Operating With a 0.3-1.8-V Unregulated Supply

    Get PDF
    In this paper, a pW-power relaxation oscillator for sensor node applications is presented. The proposed oscillator operates over a wide supply voltage range from nominal down to deep sub-threshold and requires only a sub-pF capacitor for Hz-range output frequency. A true pW-power operation is enabled thanks to the adoption of an architecture leveraging transistor operation in super-cutoff, the elimination of voltage regulation, and current reference. Indeed, the oscillator can be powered directly from highly variable voltage sources (e.g., harvesters and batteries over their whole charge/discharge cycle). This is achieved thanks to the wide supply voltage range, the low voltage sensitivity of the output frequency and the current drawn from the supply. A test chip of the proposed oscillator in 180 nm exhibits a nominal frequency of approximately 4 Hz, a supply voltage range from 1.8 V down to 0.3 V with 10%/V supply sensitivity, 8-18-pA current absorption, and 4%/°C thermal drift from -20 °C to 40 °C at an area of 1600 μm². To the best of the authors' knowledge, the proposed oscillator is the only one able to operate from sub-threshold to nominal voltage

    Study on On-Chip Antenna Design Based on Metamaterial-Inspired and Substrate Integrated Waveguide Properties for Millimetre-Wave and THz Integrated-Circuit Applications

    Get PDF
    This paper presents the results of a study on improving the performance parameters such as the impedance bandwidth, radiation gain and efficiency, as well as suppressing substrate loss of an innovative antenna for on-chip implementation for millimetre-wave and terahertz integrated-circuits. This was achieved by using the metamaterial and the substrate-integrated waveguide (SIW) technologies. The on-chip antenna structure comprises five alternating layers of metallization and silicon. An array of circular radiation patches with metamaterial-inspired crossed-shaped slots are etched on the top metallization layer below which is a silicon layer whose bottom surface is metalized to create a ground plane. Implemented in the silicon layer below is a cavity above which is no ground plane. Underneath this silicon layer is where an open-ended microstrip feedline is located which is used to excite the antenna. The feed mechanism is based on the coupling of the electromagnetic energy from the bottom silicon layer to the top circular patches through the cavity. To suppress surface waves and reduce substrate loss, the SIW concept is applied at the top silicon layer by implementing the metallic via holes at the periphery of the structure that connect the top layer to the ground plane. The proposed on-chip antenna has an average measured radiation gain and efficiency of 6.9 dBi and 53%, respectively, over its operational frequency range from 0.285–0.325 THz. The proposed on-chip antenna has dimensions of 1.35 × 1 × 0.06 mm3. The antenna is shown to be viable for applications in millimetre-waves and terahertz integrated-circuits

    6G Vision, Value, Use Cases and Technologies from European 6G Flagship Project Hexa-X

    Get PDF
    While 5G is being deployed and the economy and society begin to reap the associated benefits, the research and development community starts to focus on the next, 6th Generation (6G) of wireless communications. Although there are papers available in the literature on visions, requirements and technical enablers for 6G from various academic perspectives, there is a lack of joint industry and academic work towards 6G. In this paper a consolidated view on vision, values, use cases and key enabling technologies from leading industry stakeholders and academia is presented. The authors represent the mobile communications ecosystem with competences spanning hardware, link layer and networking aspects, as well as standardization and regulation. The second contribution of the paper is revisiting and analyzing the key concurrent initiatives on 6G. A third contribution of the paper is the identification and justification of six key 6G research challenges: (i) “connecting”, in the sense of empowering, exploiting and governing, intelligence; (ii) realizing a network of networks, i.e., leveraging on existing networks and investments, while reinventing roles and protocols where needed; (iii) delivering extreme experiences, when/where needed; (iv) (environmental, economic, social) sustainability to address the major challenges of current societies; (v) trustworthiness as an ingrained fundamental design principle; (vi) supporting cost-effective global service coverage. A fourth contribution is a comprehensive specification of a concrete first-set of industry and academia jointly defined use cases for 6G, e.g., massive twinning, cooperative robots, immersive telepresence, and others. Finally, the anticipated evolutions in the radio, network and management/orchestration domains are discussed
    corecore