541 research outputs found

    Guarded Cubical Type Theory: Path Equality for Guarded Recursion

    Get PDF
    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\"of type theory in which the identity type is replaced by abstract paths between terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of CTT as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation, and present semantics in a presheaf category.Comment: 17 pages, to be published in proceedings of CSL 201

    Bisimulation as path type for guarded recursive types

    Get PDF
    In type theory, coinductive types are used to represent processes, and are thus crucial for the formal verification of non-terminating reactive programs in proof assistants based on type theory, such as Coq and Agda. Currently, programming and reasoning about coinductive types is difficult for two reasons: The need for recursive definitions to be productive, and the lack of coincidence of the built-in identity types and the important notion of bisimilarity. Guarded recursion in the sense of Nakano has recently been suggested as a possible approach to dealing with the problem of productivity, allowing this to be encoded in types. Indeed, coinductive types can be encoded using a combination of guarded recursion and universal quantification over clocks. This paper studies the notion of bisimilarity for guarded recursive types in Ticked Cubical Type Theory, an extension of Cubical Type Theory with guarded recursion. We prove that, for any functor, an abstract, category theoretic notion of bisimilarity for the final guarded coalgebra is equivalent (in the sense of homotopy type theory) to path equality (the primitive notion of equality in cubical type theory). As a worked example we study a guarded notion of labelled transition systems, and show that, as a special case of the general theorem, path equality coincides with an adaptation of the usual notion of bisimulation for processes. In particular, this implies that guarded recursion can be used to give simple equational reasoning proofs of bisimilarity. This work should be seen as a step towards obtaining bisimilarity as path equality for coinductive types using the encodings mentioned above

    Greatest HITs: Higher Inductive Types in Coinductive Definitions via Induction under Clocks

    Get PDF
    Guarded recursion is a powerful modal approach to recursion that can be seen as an abstract form of step-indexing. It is currently used extensively in separation logic to model programming languages with advanced features by solving domain equations also with negative occurrences. In its multi-clocked version, guarded recursion can also be used to program with and reason about coinductive types, encoding the productivity condition required for recursive definitions in types. This paper presents the first type theory combining multi-clocked guarded recursion with the features of Cubical Type Theory, as well as a denotational semantics. Using the combination of Higher Inductive Types (HITs) and guarded recursion allows for simple programming and reasoning about coinductive types that are traditionally hard to represent in type theory, such as the type of finitely branching labelled transition systems. For example, our results imply that bisimilarity for these imply path equality, and so proofs can be transported along bisimilarity proofs. Among our technical contributions is a new principle of induction under clocks. This allows universal quantification over clocks to commute with HITs up to equivalence of types, and is crucial for the encoding of coinductive types. Such commutativity requirements have been formulated for inductive types as axioms in previous type theories with multi-clocked guarded recursion, but our present formulation as an induction principle allows for the formulation of general computation rules.Comment: 29 page

    Cubical modal type theories

    Get PDF

    Formalizing íś‹-calculus in guarded cubical Agda

    Get PDF

    Realising Intensional S4 and GL Modalities

    Get PDF

    The Clocks They Are Adjunctions: Denotational Semantics for Clocked Type Theory

    Get PDF
    Clocked Type Theory (CloTT) is a type theory for guarded recursion useful for programming with coinductive types, allowing productivity to be encoded in types, and for reasoning about advanced programming language features using an abstract form of step-indexing. CloTT has previously been shown to enjoy a number of syntactic properties including strong normalisation, canonicity and decidability of type checking. In this paper we present a denotational semantics for CloTT useful, e.g., for studying future extensions of CloTT with constructions such as path types. The main challenge for constructing this model is to model the notion of ticks used in CloTT for coinductive reasoning about coinductive types. We build on a category previously used to model guarded recursion, but in this category there is no object of ticks, so tick-assumptions in a context can not be modelled using standard tools. Instead we show how ticks can be modelled using adjoint functors, and how to model the tick constant using a semantic substitution
    • …
    corecore