20,779 research outputs found

    Guard Interval Adaptation for In-home Power Line Communication

    No full text
    International audienceThis paper aims to analyze the choice of the guard interval (GI) length in PLC systems to optimize the achievable throughput under power and symbol error-rate (SER) constraints. In general, the GI length is chosen so that there is no interference, i.e. the GI length is greater than or equal to the channel impulse response length. However, many previous works have shown that in PLC systems, this GI choice is inefficient in terms of achievable throughput. Indeed, shorter GI evidently results in inter-symbol interference (ISI) and intercarrier interference (ICI), but the gain offered by shortened GI may exceed the loss caused by interference. In this paper, we propose a simple solution for the GI length adaptation in PLC systems to optimize the achievable throughput

    A comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN standards

    Get PDF

    Throughput and range characterization of IEEE 802.11ah

    Full text link
    The most essential part of Internet of Things (IoT) infrastructure is the wireless communication system that acts as a bridge for the delivery of data and control messages. However, the existing wireless technologies lack the ability to support a huge amount of data exchange from many battery driven devices spread over a wide area. In order to support the IoT paradigm, the IEEE 802.11 standard committee is in process of introducing a new standard, called IEEE 802.11ah. This is one of the most promising and appealing standards, which aims to bridge the gap between traditional mobile networks and the demands of the IoT. In this paper, we first discuss the main PHY and MAC layer amendments proposed for IEEE 802.11ah. Furthermore, we investigate the operability of IEEE 802.11ah as a backhaul link to connect devices over a long range. Additionally, we compare the aforementioned standard with previous notable IEEE 802.11 amendments (i.e. IEEE 802.11n and IEEE 802.11ac) in terms of throughput (with and without frame aggregation) by utilizing the most robust modulation schemes. The results show an improved performance of IEEE 802.11ah (in terms of power received at long range while experiencing different packet error rates) as compared to previous IEEE 802.11 standards.Comment: 7 pages, 6 figures, 5 table

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Hotspot wireless LANs to enhance the performance of 3G and beyond cellular networks

    Get PDF

    Restricted Mobility Improves Delay-Throughput Trade-offs in Mobile Ad-Hoc Networks

    Get PDF
    In this paper we revisit two classes of mobility models which are widely used to repre-sent users ’ mobility in wireless networks: Random Waypoint (RWP) and Random Direction (RD). For both models we obtain systems of partial differential equations which describe the evolution of the users ’ distribution. For the RD model, we show how the equations can be solved analytically both in the stationary and transient regime adopting standard mathematical techniques. Our main contributions are i) simple expressions which relate the transient dura-tion to the model parameters; ii) the definition of a generalized random direction model whose stationary distribution of mobiles in the physical space corresponds to an assigned distribution
    • 

    corecore