98 research outputs found

    Software engineering for self-adaptive systems:research challenges in the provision of assurances

    Get PDF
    The important concern for modern software systems is to become more cost-effective, while being versatile, flexible, resilient, dependable, energy-efficient, customisable, configurable and self-optimising when reacting to run-time changes that may occur within the system itself, its environment or requirements. One of the most promising approaches to achieving such properties is to equip software systems with self-managing capabilities using self-adaptation mechanisms. Despite recent advances in this area, one key aspect of self-adaptive systems that remains to be tackled in depth is the provision of assurances, i.e., the collection, analysis and synthesis of evidence that the system satisfies its stated functional and non-functional requirements during its operation in the presence of self-adaptation. The provision of assurances for self-adaptive systems is challenging since run-time changes introduce a high degree of uncertainty. This paper on research challenges complements previous roadmap papers on software engineering for self-adaptive systems covering a different set of topics, which are related to assurances, namely, perpetual assurances, composition and decomposition of assurances, and assurances obtained from control theory. This research challenges paper is one of the many results of the Dagstuhl Seminar 13511 on Software Engineering for Self-Adaptive Systems: Assurances which took place in December 2013

    Developing an M-Learning Application for iOS

    Get PDF
    The mobile market development has a high impact on all domains including education. Smart mobile devices started to be affordable and the massive use on educational processes does not seem to be too far. Mobile learning applications are be targeted for all major mobile operating systems as native applications or Web-based. The objective of this paper is to present the implementation of the evaluation module for an m-learning application developed for iOS devices. The m-learning application is targeted to a higher education institution. The application uses Web services in order to obtain the content and to authenticate the users

    Zone-based formal specification and timing analysis of real-time self-adaptive systems

    Get PDF
    Self-adaptive software systems are able to autonomously adapt their behavior at run-time to react to internal dynamics and to uncertain and changing environment conditions. Formal specification and verification of self-adaptive systems are tasks generally very difficult to carry out, especially when involving time constraints. In this case, in fact, the system correctness depends also on the time associated with events. This article introduces the Zone-based Time Basic Petri nets specification formalism. The formalism adopts timed adaptation models to specify self-adaptive behavior with temporal constraints, and relies on a zone-based modeling approach to support separation of concerns. Zones identified during the modeling phase can be then used as modules either in isolation, to verify intra-zone properties, or all together, to verify inter-zone properties over the entire system. In addition, the framework allows the verification of (timed) robustness properties to guarantee self-healing capabilities when higher levels of reliability and availability are required to the system, especially when dealing with time-critical systems. This article presents also the ZAFETY tool, a Java software implementation of the proposed framework, and the validation and experimental results obtained in modeling and verifying two time-critical self-adaptive systems: the Gas Burner system and the Unmanned Aerial Vehicle system

    Engineering Trustworthy Self-Adaptive Software with Dynamic Assurance Cases

    Get PDF
    Building on concepts drawn from control theory, self-adaptive software handles environmental and internal uncertainties by dynamically adjusting its architecture and parameters in response to events such as workload changes and component failures. Self-adaptive software is increasingly expected to meet strict functional and non-functional requirements in applications from areas as diverse as manufacturing, healthcare and finance. To address this need, we introduce a methodology for the systematic ENgineering of TRUstworthy Self-adaptive sofTware (ENTRUST). ENTRUST uses a combination of (1) design-time and runtime modelling and verification, and (2) industry-adopted assurance processes to develop trustworthy self-adaptive software and assurance cases arguing the suitability of the software for its intended application. To evaluate the effectiveness of our methodology, we present a tool-supported instance of ENTRUST and its use to develop proof-of-concept self-adaptive software for embedded and service-based systems from the oceanic monitoring and e-finance domains, respectively. The experimental results show that ENTRUST can be used to engineer self-adaptive software systems in different application domains and to generate dynamic assurance cases for these systems

    A Runtime Verification and Validation Framework for Self-Adaptive Software

    Get PDF
    The concepts that make self-adaptive software attractive also make it more difficult for users to gain confidence that these systems will consistently meet their goals under uncertain context. To improve user confidence in self-adaptive behavior, machine-readable conceptual models have been developed to instrument the adaption behavior of the target software system and primary feedback loop. By comparing these machine-readable models to the self-adaptive system, runtime verification and validation may be introduced as another method to increase confidence in self-adaptive systems; however, the existing conceptual models do not provide the semantics needed to institute this runtime verification or validation. This research confirms that the introduction of runtime verification and validation for self-adaptive systems requires the expansion of existing conceptual models with quality of service metrics, a hierarchy of goals, and states with temporal transitions. Based on this expanded semantics, runtime verification and validation was introduced as a second-level feedback loop to improve the performance of the primary feedback loop and quantitatively measure the quality of service achieved in a state-based, self-adaptive system. A web-based purchasing application running in a cloud-based environment was the focus of experimentation. In order to meet changing customer purchasing demand, the self-adaptive system monitored external context changes and increased or decreased available application servers. The runtime verification and validation system operated as a second-level feedback loop to monitor quality of service goals based on internal context, and corrected self-adaptive behavior when goals are violated. Two competing quality of service goals were introduced to maintain customer satisfaction while minimizing cost. The research demonstrated that the addition of a second-level runtime verification and validation feedback loop did quantitatively improve self-adaptive system performance even with simple, static monitoring rules
    • …
    corecore