1,331 research outputs found

    Sampled data systems passivity and discrete port-Hamiltonian systems

    Get PDF
    In this paper, we present a novel way to approach the interconnection of a continuous and a discrete time physical system first presented in [1][2] [3]. This is done in a way which preserves passivity of the coupled system independently of the sampling time T. This strategy can be used both in the field of telemanipulation, for the implementation of a passive master/slave system on a digital transmission line with varying time delays and possible loss of packets (e.g., the Internet), and in the field of haptics, where the virtual environment should `feel¿ like a physical equivalent system

    Novel Actuation Methods for High Force Haptics

    Get PDF

    Experimental Evaluation of the Projection-based Force Reflection Algorithms for Haptic Interaction with Virtual Environment

    Get PDF
    Haptic interaction with virtual environments is currently a major and growing area of research with a number of emerging applications, particularly in the field of robotics. Digital implementation of the virtual environments, however, introduces errors which may result in instability of the haptic displays. This thesis deals with experimental investigation of the Projection-Based Force Reflection Algorithms (PFRAs) for haptic interaction with virtual environments, focusing on their performance in terms of stability and transparency. Experiments were performed to compare the PFRA in terms of performance for both non-delayed and delayed haptic interactions with more conventional haptic rendering methods, such as the Virtual Coupling (VC) and Wave Variables (WV). The results demonstrated that the PFRA is more stable, guarantees higher levels of transparency, and is less sensitive to decrease in update rates

    Application of Simultaneous Localization and Mapping Algorithms for Haptic Teleoperation of Aerial Vehicles

    Get PDF
    In this thesis, a new type of haptic teleoperator system for remote control of Unmanned Aerial Vehicles (UAVs) has been developed, where the Simultaneous Localization and Mapping (SLAM) algorithms are implemented for the purpose of generating the haptic feedback. Specifically, the haptic feedback is provided to the human operator through interaction with artificial potential field built around the obstacles in the virtual environment which is located at the master site of the teleoperator system. The obstacles in the virtual environment replicate essential features of the actual remote environment where the UAV executes its tasks. The state of the virtual environment is generated and updated in real time using Extended Kalman Filter SLAM algorithms based on measurements performed by the UAV in the actual remote environment. Two methods for building haptic feedback from SLAM algorithms have been developed. The basic SLAM-based haptic feedback algorithm uses fixed size potential field around the obstacles, while the robust SLAM-based haptic feedback algorithm changes the size of potential field around the obstacle depending on the amount of uncertainty in obstacle location, which is represented by the covariance estimate provided by EKF. Simulations and experimental results are presented that evaluate the performance of the proposed teleoperator system

    Control of Cooperative Haptics-Enabled Teleoperation Systems with Application to Minimally Invasive Surgery

    Get PDF
    Robot-Assisted Minimally Invasive Surgical (RAMIS) systems frequently have a structure of cooperative teleoperator systems where multiple master-slave pairs are used to collaboratively execute a task. Although multiple studies indicate that haptic feedback improves the realism of tool-tissue interaction to the surgeon and leads to better performance for surgical procedures, current telesurgical systems typically do not provide force feedback, mainly because of the inherent stability issues. The research presented in this thesis is directed towards the development of control algorithms for force reflecting cooperative surgical teleoperator systems with improved stability and transparency characteristics. In the case of cooperative force reflecting teleoperation over networks, conventional passivity based approaches may have limited applicability due to potentially non-passive slave-slave interactions and irregular communication delays imposed by the network. In this thesis, an alternative small gain framework for the design of cooperative network-based force reflecting teleoperator systems is developed. Using the small gain framework, control algorithms for cooperative force-reflecting teleoperator systems are designed that guarantee stability in the presence of multiple network-induced communication constraints. Furthermore, the design conservatism typically associated with the small-gain approach is eliminated by using the Projection-Based Force Reflection (PBFR) algorithms. Stability results are established for networked cooperative teleoperator systems under different types of force reflection algorithms in the presence of irregular communication delays. The proposed control approach is consequently implemented on a dual-arm (two masters/two slaves) robotic MIS testbed. The testbed consists of two Haptic Wand devices as masters and two PA10-7C robots as the slave manipulators equipped with da Vinci laparoscopic surgical instruments. The performance of the proposed control approach is evaluated in three different cooperative surgical tasks, which are knot tightening, pegboard transfer, and object manipulation. The experimental results obtained indicate that the PBFR algorithms demonstrate statistically significant performance improvement in comparison with the conventional direct force reflection algorithms. One possible shortcoming of using PBFR algorithms is that implementation of these algorithms may lead to attenuation of the high-frequency component of the contact force which is important, in particular, for haptic perception of stiff surfaces. In this thesis, a solution to this problem is proposed which is based on the idea of separating the different frequency bands in the force reflection signal and consequently applying the projection-based principle to the low-frequency component, while reflecting the high-frequency component directly. The experimental results demonstrate that substantial improvement in transient fidelity of the force feedback is achieved using the proposed method without negative effects on the stability of the system

    On the passivity of interaction control with series elastic actuation

    Get PDF
    Regulating the mechanical interaction between robot and environment is a fundamentally important problem in robotics. Many applications such as manipulation and assembly tasks necessitate interaction control. Applications in which the robots are expected to collaborate and share the workspace with humans also require interaction control. Therefore, interaction controllers are quintessential to physical human-robot interaction (pHRI) applications. Passivity paradigm provides powerful design tools to ensure the safety of interaction. It relies on the idea that passive systems do not generate energy that can potentially destabilize the system. Thus, coupled stability is guaranteed if the controller and the environment are passive. Fortunately, passive environments constitute an extensive and useful set, including all combinations of linear or nonlinear masses, springs, and dampers. Moreover, a human operator may also be treated as a passive network element. Passivity paradigm is appealing for pHRI applications as it ensures stability robustness and provides ease-of-control design. However, passivity is a conservative framework which imposes stringent limits on control gains that deteriorate the performance. Therefore, it is of paramount importance to obtain the most relaxed passivity bounds for the control design problem. Series Elastic Actuation (SEA) has become prevalent in pHRI applications as it provides considerable advantages over traditional sti actuators in terms of stability robustness and delity of force control, thanks to deliberately introduced compliance between the actuator and the load. Several impedance control architectures have been proposed for SEA. Among the alternatives, the cascaded controller with an inner-most velocity loop, an intermediate torque loop and an outer-most impedance loop is particularly favoured for its simplicity, robustness, and performance. In this thesis, we derive the necessary and su cient conditions to ensure the passivity of the cascade-controller architecture for rendering two classical linear impedance models of null impedance and pure spring. Based on the newly established passivity conditions, we provide non-conservative design guidelines to haptically display free-space and virtual spring while ensuring coupled stability, thus the safety of interaction. We demonstrate the validity of these conditions through simulation studies as well as physical experiments. We demonstrate the importance of including physical damping in the actuator model during derivation of passivity conditions, when integral controllers are utilized. We note the unintuitive adversary e ect of actuator damping on system passivity. More precisely, we establish that the damping term imposes an extra bound on controller gains to preserve passivity. We further study an extension to the cascaded SEA control architecture and discover that series elastic damping actuation (SEDA) can passively render impedances that are out of the range of SEA. In particular, we demonstrate that SEDA can passively render Voigt model and impedances higher than the physical spring-damper pair in SEDA. The mathematical analyses of SEDA are veri ed through simulations

    Realizing low-impedance rendering in admittance-type haptic interfaces using the input-to-state stable approach

    Get PDF
    © 2017 IEEE. This paper proposes an approach to enlarge the impedance range of admittance-type haptic interfaces. Admittance-type haptic interfaces have advantages over impedance-type haptic interfaces in the interaction with high impedance virtual environments. However, the performance of admittance-type haptic interfaces is often limited by the lower boundary of the impedance that can be achieved without stability issue. Especially, it is well known that low value of inertia in an admittance model often causes unstable interaction. This paper extends recently proposed input-to-state stable approach [1] to further lower down the achievable impedance in admittance-type haptic interfaces with less conservative constraint compared with the passivity-based approaches. The primary challenge was identifying the nonlinear hysteresis components which are essential for the implementation of the input-to-state stable approach. Through experimental investigation and after separating and merging the admittance model and the position controller, the partial admittance model (from the measured human force to the desired velocity) and the velocity controller (from the velocity tracking error to the controller force) were found having counter-clockwise hysteresis nonlinear behavior. Therefore, it allows implementing the one-port input-to-state stable (ISS) approach for making both components dissipative and ISS. An additional advantage of the proposed ISS approach is the easiness of the implementation. No model information is required, and the network representation is not necessary, unlike the passivity-based approaches. Series of experiments verified the effectiveness of the proposed approach in term of significantly lowering the achievable impedance value compared with what the time-domain passivity approach can render
    corecore