2,872 research outputs found

    Guaranteed parameter estimation in nonlinear dynamic systems using improved bounding techniques

    Get PDF
    This paper is concerned with guaranteed parameter estimation in nonlinear dynamic systems in a context of bounded measurement error. The problem consists of finding - or approximating as closely as possible - the set of all possible parameter values such that the predicted outputs match the corresponding measurements within prescribed error bounds. An exhaustive search procedure is applied, whereby the parameter set is successively partitioned into smaller boxes and exclusion tests are performed to eliminate some of these boxes, until a prespecified threshold on the approximation level is met. Exclusion tests rely on the ability to bound the solution set of the dynamic system for a given parameter subset and the tightness of these bounds is therefore paramount. Equally important is the time required to compute the bounds, thereby defining a trade-off. It is the objective of this paper to investigate this trade-off by comparing various bounding techniques based on interval arithmetic, Taylor model arithmetic and ellipsoidal calculus. When applied to a simple case study, ellipsoidal and Taylor model approaches are found to reduce the number of iterations significantly compared to interval analysis, yet the overall computational time is only reduced for tight approximation levels due to the computational overhead. © 2013 EUCA

    Optimization-based domain reduction in guaranteed parameter estimation of nonlinear dynamic systems

    Get PDF
    This paper is concerned with guaranteed parameter estimation in nonlinear dynamic systems in a context of bounded measurement error. The problem consists of finding-or approximating as closely as possible-the set of all possible parameter values such that the predicted outputs match the corresponding measurements within prescribed error bounds. An exhaustive search procedure is applied, whereby the parameter set is successively partitioned into smaller boxes and exclusion tests are performed to eliminate some of these boxes, until a prespecified threshold on the approximation level is met. In order to enhance the convergence of this procedure, we investigate the use of optimization-based domain reduction techniques for tightening the parameter boxes before partitioning. We construct such bound-reduction problems as linear programs from the polyhedral relaxation of Taylor models of the predicted outputs. When applied to a simple case study, the proposed approach is found to reduce the computational burden significantly, both in terms of CPU time and number of iterations. © IFAC

    Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand.</p> <p>Results</p> <p>In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort.</p> <p>Conclusions</p> <p>The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates.</p

    Parametric uncertainty in system identification

    Get PDF

    Accurate extreme-value-based frequency response bounding for structures with a small number of highly random parameters

    Get PDF
    A modified extreme-value-based methodology is discussed for computing statistical bounds associated with the magnitude of the frequency response of a specified number of structures with high levels of random parameter uncertainty. The methodology, intended for small numbers of uncertain parameters, is capable of constructing accurate statistical bounds in terms of quantiles associated with the extreme value distribution. Quantiles can be constructed for an ensemble of structural responses across the entire frequency range without using Monte Carlo Simulation. To test the methodology, statistical bounds for the energy of an L-shaped structure with low and high levels of uniformly-distributed length and thickness variability are obtained: i) via direct integration using an ANSYS Finite Element model, and ii) via Statistical Energy Analysis (SEA). Comparisons are shown with bounds obtained using Monte Carlo simulation. The merit of direct integration for computing bounds associated with the responses of an ensemble of structures with high levels of random parameter uncertainty is demonstrated by its simplicity, high accuracy, and absence of statistical scatter

    Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design

    Get PDF
    Many applications require optimizing an unknown, noisy function that is expensive to evaluate. We formalize this task as a multi-armed bandit problem, where the payoff function is either sampled from a Gaussian process (GP) or has low RKHS norm. We resolve the important open problem of deriving regret bounds for this setting, which imply novel convergence rates for GP optimization. We analyze GP-UCB, an intuitive upper-confidence based algorithm, and bound its cumulative regret in terms of maximal information gain, establishing a novel connection between GP optimization and experimental design. Moreover, by bounding the latter in terms of operator spectra, we obtain explicit sublinear regret bounds for many commonly used covariance functions. In some important cases, our bounds have surprisingly weak dependence on the dimensionality. In our experiments on real sensor data, GP-UCB compares favorably with other heuristical GP optimization approaches

    Verification of system properties of polynomial systems using discrete-time approximations and set-based analysis

    Get PDF
    Magdeburg, Univ., Fak. fĂĽr Elektrotechnik und Informationstechnik, Diss., 2015von Philipp Rumschinsk
    • …
    corecore