4,332 research outputs found

    Guaranteed Cost Control of Polynomial Fuzzy Systems via a Sum of Squares Approach

    Get PDF
    This paper presents the guaranteed cost control of polynomial fuzzy systems via a sum of squares (SOS) approach. First, we present a polynomial fuzzy model and controller that are more general representations of the well-known Takagi-Sugeno (T-S) fuzzy model and controller, respectively. Second, we derive a guaranteed cost control design condition based on polynomial Lyapunov functions. Hence, the design approach discussed in this paper is more general than the existing LMI approaches (to T-S fuzzy control system designs) based on quadratic Lyapunov functions. The design condition realizes a guaranteed cost control by minimizing the upper bound of a given performance function. In addition, the design condition in the proposed approach can be represented in terms of SOS and is numerically (partially symbolically) solved via the recent developed SOSTOOLS. To illustrate the validity of the design approach, two design examples are provided. The first example deals with a complicated nonlinear system. The second example presents micro helicopter control. Both the examples show that our approach provides more extensive design results for the existing LMI approach

    Contributions to fuzzy polynomial techniques for stability analysis and control

    Full text link
    The present thesis employs fuzzy-polynomial control techniques in order to improve the stability analysis and control of nonlinear systems. Initially, it reviews the more extended techniques in the field of Takagi-Sugeno fuzzy systems, such as the more relevant results about polynomial and fuzzy polynomial systems. The basic framework uses fuzzy polynomial models by Taylor series and sum-of-squares techniques (semidefinite programming) in order to obtain stability guarantees. The contributions of the thesis are: ¿ Improved domain of attraction estimation of nonlinear systems for both continuous-time and discrete-time cases. An iterative methodology based on invariant-set results is presented for obtaining polynomial boundaries of such domain of attraction. ¿ Extension of the above problem to the case with bounded persistent disturbances acting. Different characterizations of inescapable sets with polynomial boundaries are determined. ¿ State estimation: extension of the previous results in literature to the case of fuzzy observers with polynomial gains, guaranteeing stability of the estimation error and inescapability in a subset of the zone where the model is valid. ¿ Proposal of a polynomial Lyapunov function with discrete delay in order to improve some polynomial control designs from literature. Preliminary extension to the fuzzy polynomial case. Last chapters present a preliminary experimental work in order to check and validate the theoretical results on real platforms in the future.Pitarch Pérez, JL. (2013). Contributions to fuzzy polynomial techniques for stability analysis and control [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34773TESI

    H∞ Control of Polynomial Fuzzy Systems: a Sum of Squares Approach

    Full text link
    This paper proposes the control design ofa nonlinear polynomial fuzzy system with H∞ performance objective using a sum of squares (SOS) approach. Fuzzy model and controller are represented by a polynomial fuzzy model and controller. The design condition is obtained by using polynomial Lyapunov functions that not only guarantee stability but also satisfy the H∞ performance objective. The design condition is represented in terms of an SOS that can be numerically solved via the SOSTOOLS. A simulation study is presented to show the effectiveness of the SOS-based H∞ control designfor nonlinear polynomial fuzzy systems

    Fuzzy control turns 50: 10 years later

    Full text link
    In 2015, we celebrate the 50th anniversary of Fuzzy Sets, ten years after the main milestones regarding its applications in fuzzy control in their 40th birthday were reviewed in FSS, see [1]. Ten years is at the same time a long period and short time thinking to the inner dynamics of research. This paper, presented for these 50 years of Fuzzy Sets is taking into account both thoughts. A first part presents a quick recap of the history of fuzzy control: from model-free design, based on human reasoning to quasi-LPV (Linear Parameter Varying) model-based control design via some milestones, and key applications. The second part shows where we arrived and what the improvements are since the milestone of the first 40 years. A last part is devoted to discussion and possible future research topics.Guerra, T.; Sala, A.; Tanaka, K. (2015). Fuzzy control turns 50: 10 years later. Fuzzy Sets and Systems. 281:162-182. doi:10.1016/j.fss.2015.05.005S16218228

    Relaxed stability conditions based on Taylor series membership functions for polynomial fuzzy-model-based control systems

    Full text link
    © 2014 IEEE. In this paper, we investigate the stability of polynomial fuzzy-model-based (PFMB) control systems, aiming to relax stability conditions by considering the information of membership functions. To facilitate the stability analysis, we propose a general form of approximated membership functions, which is implemented by Taylor series expansion. Taylor series membership functions (TSMF) can be brought into stability conditions such that the relation between membership grades and system states is expressed. To further reduce the con-servativeness, different types of information are taken into account: the boundary of membership functions, the property of membership functions, and the boundary of operating domain. Stability conditions are obtained from Lyapunov stability theory by sum of squares (SOS) approach. Simulation examples demonstrate the effect of each piece of information

    Polynomial Fuzzy Observer Designs: A Sum-of-Squares Approach

    Get PDF
    This paper presents a simple passive attitude stabilizer (PAS) for vision-based stabilization of palm-size aerial vehicles. First, a mathematical dynamic model of a palm-size aerial vehicle with the proposed PAS is constructed. Stability analysis for the dynamics is carried out in terms of Lyapunov stability theory. The analysis results show that the proposed stabilizer guarantees passive stabilizing behavior, i.e., passive attitude recovering, of the aerial vehicle for small perturbations from a stability theory point of view. Experimental results demonstrate the utility of the proposed PAS for the aerial vehicle

    Fitted Q-Function Control Methodology Based on Takagi-Sugeno Systems

    Full text link
    "© 2020 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."[EN] This paper presents a combined identification/ Q-function fitting methodology that involves identification of a Takagi-Sugeno model, computation of (sub)optimal controllers from linear matrix inequalities (LMIs), and subsequent data-based fitting of the Q-function via monotonic optimization. The LMI-based initialization provides a conservative solution, but it is a sensible starting point to avoid convergence/local-minima issues in raw data-based fitted Q-iteration or Bellman residual minimization. An inverted-pendulum experimental case study illustrates the approach.This work was supported in part by the Spanish Ministry of Economy and European Union (AEI/FEDER, UE) under Grant DPI2016-81002-R and in part by the Government of Ecuador through the Ph.D. Grant SENESCYT.Diaz-Iza, HP.; Armesto, L.; Sala, A. (2020). Fitted Q-Function Control Methodology Based on Takagi-Sugeno Systems. IEEE Transactions on Control Systems Technology. 28(2):477-488. https://doi.org/10.1109/TCST.2018.2885689S47748828

    A New Sum-of-Squares Design Framework for Robust Control of Polynomial Fuzzy Systems With Uncertainties

    Get PDF
    This paper presents a new sum-of-squares (SOS, for brevity) design framework for robust control of polynomial fuzzy systems with uncertainties. Two kinds of robust stabilization conditions are derived in terms of SOS. One is global SOS robust stabilization conditions that guarantee the global and asymptotical stability of polynomial fuzzy control systems. The other is semiglobal SOS robust stabilization conditions. The latter is available for very complicated systems that are difficult to guarantee the global and asymptotical stability of polynomial fuzzy control systems. The main feature of all the SOS robust stabilization conditions derived in this paper are to be expressed as nonconvex formulations with respect to polynomial Lyapunov function parameters and polynomial feedback gains. Since a typical transformation from nonconvex SOS design conditions to convex SOS design conditions often results in some conservative issues, the new design framework presented in this paper gives key ideas to avoid the conservative issues. The first key idea is that we directly solve nonconvex SOS design conditions without applying the typical transformation. The second key idea is that we bring a so-called copositivity concept. These ideas provide some advantages in addition to relaxations. To solve our SOS robust stabilization conditions efficiently, we introduce a gradient algorithm formulated as a minimizing optimization problem of the upper bound of the time derivative of an SOS polynomial that can be regarded as a candidate of polynomial Lyapunov functions. Three design examples are provided to illustrate the validity and applicability of the proposed design framework. The examples demonstrate advantages of our new SOS design framework for the existing linear matrix inequality approaches and the existing convex SOS approach
    • …
    corecore