152,415 research outputs found

    Towards a Nonperturbative Path Integral in Gauge Theories

    Get PDF
    We propose a modification of the Faddeev-Popov procedure to construct a path integral representation for the transition amplitude and the partition function for gauge theories whose orbit space has a non-Euclidean geometry. Our approach is based on the Kato-Trotter product formula modified appropriately to incorporate the gauge invariance condition, and thereby equivalence to the Dirac operator formalism is guaranteed by construction. The modified path integral provides a solution to the Gribov obstruction as well as to the operator ordering problem when the orbit space has curvature. A few explicit examples are given to illustrate new features of the formalism developed. The method is applied to the Kogut-Susskind lattice gauge theory to develop a nonperturbative functional integral for a quantum Yang-Mills theory. Feynman's conjecture about a relation between the mass gap and the orbit space geometry in gluodynamics is discussed in the framework of the modified path integral.Comment: plain Latex, 12 pages, a few changes made and some comments added, a final version to appear in Phys. Lett.

    Simple examples of pure-jump strict local martingales

    Full text link
    We present simple new examples of pure-jump strict local martingales. The examples are constructed as exponentials of self-exciting affine Markov processes. We characterize the strict local martingale property of these processes by an integral criterion and by non-uniqueness of an associated ordinary differential equation. Finally we show an alternative construction for our examples by an absolutely continuous measure change in the spirit of (Delbaen and Schachermayer, PTRF 1995)

    The Complexity of Computing Minimal Unidirectional Covering Sets

    Full text link
    Given a binary dominance relation on a set of alternatives, a common thread in the social sciences is to identify subsets of alternatives that satisfy certain notions of stability. Examples can be found in areas as diverse as voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08] proved that it is NP-hard to decide whether an alternative is contained in some inclusion-minimal upward or downward covering set. For both problems, we raise this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other natural problems regarding minimal or minimum-size covering sets are hard or complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of our results is that neither minimal upward nor minimal downward covering sets (even when guaranteed to exist) can be computed in polynomial time unless P=NP. This sharply contrasts with Brandt and Fischer's result that minimal bidirectional covering sets (i.e., sets that are both minimal upward and minimal downward covering sets) are polynomial-time computable.Comment: 27 pages, 7 figure

    Cooperative Decentralized Multi-agent Control under Local LTL Tasks and Connectivity Constraints

    Full text link
    We propose a framework for the decentralized control of a team of agents that are assigned local tasks expressed as Linear Temporal Logic (LTL) formulas. Each local LTL task specification captures both the requirements on the respective agent's behavior and the requests for the other agents' collaborations needed to accomplish the task. Furthermore, the agents are subject to communication constraints. The presented solution follows the automata-theoretic approach to LTL model checking, however, it avoids the computationally demanding construction of synchronized product system between the agents. We suggest a decentralized coordination among the agents through a dynamic leader-follower scheme, to guarantee the low-level connectivity maintenance at all times and a progress towards the satisfaction of the leader's task. By a systematic leader switching, we ensure that each agent's task will be accomplished.Comment: full version of CDC 2014 submissio

    Explicit nonparametric confidence intervals for the variance with guaranteed coverage

    Get PDF
    In this paper, we provide a method for constructing confidence intervals for the variance that exhibit guaranteed coverage probability for any sample size, uniformly over a wide class of probability distributions. In contrast, standard methods achieve guaranteed coverage only in the limit for a fixed distribution or for any sample size over a very restrictive (parametric) class of probability distributions. Of course, it is impossible to construct effective confidence intervals for the variance without some restriction, due to a result of Bahadur and Savage (1956). However, it is possible if the observations lie in a fixed compact set. We also consider the case of lower confidence bounds without any support restriction. Our method is based on the behavior of the variance over distributions that lie within a Kolmogorov-Smirnov confidence band for the underlying distribution. The method is a generalization of an idea of Anderson (1967), who considered only the case of the mean; it applies to very general parameters, and particularly the variance. While typically it is not clear how to compute these intervals explicitly, for the special case of the variance we provide an algorithm to do so. Asymptotically, the length of the intervals is of order n -1/2 in probability), so that, while providing guaranteed coverage, they are not overly conservative. A small simulation study examines the finite sample behavior of the proposed intervals

    A new equilibrated residual method improving accuracy and efficiency of flux-free error estimates

    Get PDF
    This paper presents a new methodology to compute guaranteed upper bounds for the energy norm of the error in the context of linear finite element approximations of the reaction–diffusion equation. The new approach revisits the ideas in Parés et al. (2009) [6, 4], with the goal of substantially reducing the computational cost of the flux-free method while retaining the good quality of the bounds. The new methodology provides also a technique to compute equilibrated boundary tractions improving the quality of standard equilibration strategies. The zeroth-order equilibration conditions are imposed using an alternative less restrictive form of the first-order equilibration conditions, along with a new efficient minimization criterion. This new equilibration strategy provides much more accurate upper bounds for the energy and requires only doubling the dimension of the local linear systems of equations to be solved.Postprint (author's final draft

    A High-Order Method for Stiff Boundary Value Problems with Turning Points

    Get PDF
    This paper describes some high-order collocation-like methods for the numerical solution of stiff boundary-value problems with turning points. The presentation concentrates on the implementation of these methods in conjunction with the implementation of the a priori mesh construction algorithm introduced by Kreiss, Nichols and Brown [SIAM J. Numer. Anal., 23 (1986), pp. 325–368] for such problems. Numerical examples are given showing the high accuracy which can be obtained in solving the boundary value problem for singularly perturbed ordinary differential equations with turning points
    corecore