8,438 research outputs found

    Guaranteed Rank Minimization via Singular Value Projection

    Full text link
    Minimizing the rank of a matrix subject to affine constraints is a fundamental problem with many important applications in machine learning and statistics. In this paper we propose a simple and fast algorithm SVP (Singular Value Projection) for rank minimization with affine constraints (ARMP) and show that SVP recovers the minimum rank solution for affine constraints that satisfy the "restricted isometry property" and show robustness of our method to noise. Our results improve upon a recent breakthrough by Recht, Fazel and Parillo (RFP07) and Lee and Bresler (LB09) in three significant ways: 1) our method (SVP) is significantly simpler to analyze and easier to implement, 2) we give recovery guarantees under strictly weaker isometry assumptions 3) we give geometric convergence guarantees for SVP even in presense of noise and, as demonstrated empirically, SVP is significantly faster on real-world and synthetic problems. In addition, we address the practically important problem of low-rank matrix completion (MCP), which can be seen as a special case of ARMP. We empirically demonstrate that our algorithm recovers low-rank incoherent matrices from an almost optimal number of uniformly sampled entries. We make partial progress towards proving exact recovery and provide some intuition for the strong performance of SVP applied to matrix completion by showing a more restricted isometry property. Our algorithm outperforms existing methods, such as those of \cite{RFP07,CR08,CT09,CCS08,KOM09,LB09}, for ARMP and the matrix-completion problem by an order of magnitude and is also significantly more robust to noise.Comment: An earlier version of this paper was submitted to NIPS-2009 on June 5, 200

    Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization

    Full text link
    The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NP-hard. In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability. The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this pre-existing concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization

    Partial Sum Minimization of Singular Values in Robust PCA: Algorithm and Applications

    Full text link
    Robust Principal Component Analysis (RPCA) via rank minimization is a powerful tool for recovering underlying low-rank structure of clean data corrupted with sparse noise/outliers. In many low-level vision problems, not only it is known that the underlying structure of clean data is low-rank, but the exact rank of clean data is also known. Yet, when applying conventional rank minimization for those problems, the objective function is formulated in a way that does not fully utilize a priori target rank information about the problems. This observation motivates us to investigate whether there is a better alternative solution when using rank minimization. In this paper, instead of minimizing the nuclear norm, we propose to minimize the partial sum of singular values, which implicitly encourages the target rank constraint. Our experimental analyses show that, when the number of samples is deficient, our approach leads to a higher success rate than conventional rank minimization, while the solutions obtained by the two approaches are almost identical when the number of samples is more than sufficient. We apply our approach to various low-level vision problems, e.g. high dynamic range imaging, motion edge detection, photometric stereo, image alignment and recovery, and show that our results outperform those obtained by the conventional nuclear norm rank minimization method.Comment: Accepted in Transactions on Pattern Analysis and Machine Intelligence (TPAMI). To appea
    corecore