4,952 research outputs found

    Guaranteed Nonlinear State Estimator for Cooperative Systems

    Full text link

    Distributed Event-Triggered Control for Asymptotic Synchronization of Dynamical Networks

    Get PDF
    This paper studies synchronization of dynamical networks with event-based communication. Firstly, two estimators are introduced into each node, one to estimate its own state, and the other to estimate the average state of its neighbours. Then, with these two estimators, a distributed event-triggering rule (ETR) with a dwell time is designed such that the network achieves synchronization asymptotically with no Zeno behaviours. The designed ETR only depends on the information that each node can obtain, and thus can be implemented in a decentralized way.Comment: 8 pages, 2 figues, 1 tabl

    An integrated approach to global synchronization and state estimation for nonlinear singularly perturbed complex networks

    Get PDF
    This paper aims to establish a unified framework to handle both the exponential synchronization and state estimation problems for a class of nonlinear singularly perturbed complex networks (SPCNs). Each node in the SPCN comprises both 'slow' and 'fast' dynamics that reflects the singular perturbation behavior. General sector-like nonlinear function is employed to describe the nonlinearities existing in the network. All nodes in the SPCN have the same structures and properties. By utilizing a novel Lyapunov functional and the Kronecker product, it is shown that the addressed SPCN is synchronized if certain matrix inequalities are feasible. The state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that dynamics (both slow and fast) of the estimation error is guaranteed to be globally asymptotically stable. Again, a matrix inequality approach is developed for the state estimation problem. Two numerical examples are presented to verify the effectiveness and merits of the proposed synchronization scheme and state estimation formulation. It is worth mentioning that our main results are still valid even if the slow subsystems within the network are unstable

    Event-based H∞ consensus control of multi-agent systems with relative output feedback: The finite-horizon case

    Get PDF
    In this technical note, the H∞ consensus control problem is investigated over a finite horizon for general discrete time-varying multi-agent systems subject to energy-bounded external disturbances. A decentralized estimation-based output feedback control protocol is put forward via the relative output measurements. A novel event-based mechanism is proposed for each intelligent agent to utilize the available information in order to decide when to broadcast messages and update control input. The aim of the problem addressed is to co-design the time-varying controller and estimator parameters such that the controlled multi-agent systems achieve consensus with a disturbance attenuation level γ over a finite horizon [0,T]. A constrained recursive Riccati difference equation approach is developed to derive the sufficient conditions under which the H∞ consensus performance is guaranteed in the framework of event-based scheme. Furthermore, the desired controller and estimator parameters can be iteratively computed by resorting to the Moore-Penrose pseudo inverse. Finally, the effectiveness of the developed event-based H∞ consensus control strategy is demonstrated in the numerical simulation

    Interval Prediction for Continuous-Time Systems with Parametric Uncertainties

    Get PDF
    The problem of behaviour prediction for linear parameter-varying systems is considered in the interval framework. It is assumed that the system is subject to uncertain inputs and the vector of scheduling parameters is unmeasurable, but all uncertainties take values in a given admissible set. Then an interval predictor is designed and its stability is guaranteed applying Lyapunov function with a novel structure. The conditions of stability are formulated in the form of linear matrix inequalities. Efficiency of the theoretical results is demonstrated in the application to safe motion planning for autonomous vehicles.Comment: 6 pages, CDC 2019. Website: https://eleurent.github.io/interval-prediction
    • …
    corecore