86 research outputs found

    Guaranteed Lower Eigenvalue Bound of Steklov Operator with Conforming Finite Element Methods

    Full text link
    For the eigenvalue problem of the Steklov differential operator, by following Liu's approach, an algorithm utilizing the conforming finite element method (FEM) is proposed to provide guaranteed lower bounds for the eigenvalues. The proposed method requires the a priori error estimation for FEM solution to nonhomogeneous Neumann problems, which is solved by constructing the hypercircle for the corresponding FEM spaces and boundary conditions. Numerical examples are also shown to confirm the efficiency of our proposed method.Comment: 21 pages, 4 figures, 4 table

    Fully computable a posteriori error bounds for eigenfunctions

    Full text link
    Fully computable a posteriori error estimates for eigenfunctions of compact self-adjoint operators in Hilbert spaces are derived. The problem of ill-conditioning of eigenfunctions in case of tight clusters and multiple eigenvalues is solved by estimating the directed distance between the spaces of exact and approximate eigenfunctions. Derived upper bounds apply to various types of eigenvalue problems, e.g. to the (generalized) matrix, Laplace, and Steklov eigenvalue problems. These bounds are suitable for arbitrary conforming approximations of eigenfunctions, and they are fully computable in terms of approximate eigenfunctions and two-sided bounds of eigenvalues. Numerical examples illustrate the efficiency of the derived error bounds for eigenfunctions.Comment: 27 pages, 8 tables, 9 figure

    Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations

    Get PDF
    summary:The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, Q1rotQ_{1}^{\rm rot}, EQ1rotEQ_{1}^{\rm rot} and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented to validate our theoretical results
    • …
    corecore