1,983 research outputs found

    Editorial: Challenges in implementing digital health in public health settings in low and middle income countries.

    Get PDF
    Healthcare challenges in low- and middle-income (LMICs) have been the focus of many digital initiatives that have aimed to ensure consistent implementation of these services. During the COVID-19 pandemic, several lockdowns were imposed globally by government authorities to contain the spread of the virus. This triggered a rapid effort to integrate digital technologies into the existing health systems of LMICs (1). Digital services have the potential to improve access and care coordination across health facilities by overcoming the conventional obstacles and weaknesses of traditional systems. To promote better adoption of digital health tools the challenges need to be understood and strategies to overcome barriers must be evaluated. Hence the aim of this Research Topic was to identify specific organizational and related barriers in implementing digital health in public health settings in LMICs and further explore facilitators for successful implementation of digital technologies

    Cooperative localization of drones by using interval methods

    Get PDF
    In this article we address the problem of cooperative pose estimation in a group of unmanned aerial vehicles (UAVs) in a bounded-error context. The UAVs are equipped with cameras to track landmarks, and with a communication and ranging system to cooperate with their neighbors. Measurements are represented by intervals, and constraints are expressed on the robots poses (positions and orientations). Pose domains subpavings are obtained by using set inversion via interval analysis. Each robot of the group first computes a pose domain using only its sensors measurements. Then, through position boxes exchanges, the positions are cooperatively refined by constraint propagation in the group. Results with real robot data are presented, and show that the position accuracy is improved thanks to cooperation

    A Dynamical System Approach for Resource-Constrained Mobile Robotics

    Get PDF
    The revolution of autonomous vehicles has led to the development of robots with abundant sensors, actuators with many degrees of freedom, high-performance computing capabilities, and high-speed communication devices. These robots use a large volume of information from sensors to solve diverse problems. However, this usually leads to a significant modeling burden as well as excessive cost and computational requirements. Furthermore, in some scenarios, sophisticated sensors may not work precisely, the real-time processing power of a robot may be inadequate, the communication among robots may be impeded by natural or adversarial conditions, or the actuation control in a robot may be insubstantial. In these cases, we have to rely on simple robots with limited sensing and actuation, minimal onboard processing, moderate communication, and insufficient memory capacity. This reality motivates us to model simple robots such as bouncing and underactuated robots making use of the dynamical system techniques. In this dissertation, we propose a four-pronged approach for solving tasks in resource-constrained scenarios: 1) Combinatorial filters for bouncing robot localization; 2) Bouncing robot navigation and coverage; 3) Stochastic multi-robot patrolling; and 4) Deployment and planning of underactuated aquatic robots. First, we present a global localization method for a bouncing robot equipped with only a clock and contact sensors. Space-efficient and finite automata-based combinatorial filters are synthesized to solve the localization task by determining the robot’s pose (position and orientation) in its environment. Second, we propose a solution for navigation and coverage tasks using single or multiple bouncing robots. The proposed solution finds a navigation plan for a single bouncing robot from the robot’s initial pose to its goal pose with limited sensing. Probabilistic paths from several policies of the robot are combined artfully so that the actual coverage distribution can become as close as possible to a target coverage distribution. A joint trajectory for multiple bouncing robots to visit all the locations of an environment is incrementally generated. Third, a scalable method is proposed to find stochastic strategies for multi-robot patrolling under an adversarial and communication-constrained environment. Then, we evaluate the vulnerability of our patrolling policies by finding the probability of capturing an adversary for a location in our proposed patrolling scenarios. Finally, a data-driven deployment and planning approach is presented for the underactuated aquatic robots called drifters that creates the generalized flow pattern of the water, develops a Markov-chain based motion model, and studies the long- term behavior of a marine environment from a flow point-of-view. In a broad summary, our dynamical system approach is a unique solution to typical robotic tasks and opens a new paradigm for the modeling of simple robotics system

    Cooperative Localization of Drones by using Interval Methods

    Get PDF
    International audienc

    Using AI and Robotics for EV battery cable detection.: Development and implementation of end-to-end model-free 3D instance segmentation for industrial purposes

    Get PDF
    Master's thesis in Information- and communication technology (IKT590)This thesis describes a novel method for capturing point clouds and segmenting instances of cabling found on electric vehicle battery packs. The use of cutting-edge perception algorithm architectures, such as graph-based and voxel-based convolution, in industrial autonomous lithium-ion battery pack disassembly is being investigated. The thesis focuses on the challenge of getting a desirable representation of any battery pack using an ABB robot in conjunction with a high-end structured light camera, with "end-to-end" and "model-free" as design constraints. The thesis employs self-captured datasets comprised of several battery packs that have been captured and labeled. Following that, the datasets are used to create a perception system. This thesis recommends using HDR functionality in an industrial application to capture the full dynamic range of the battery packs. To adequately depict 3D features, a three-point-of-view capture sequence is deemed necessary. A general capture process for an entire battery pack is also presented, but a next-best-scan algorithm is likely required to ensure a "close to complete" representation. Graph-based deep-learning algorithms have been shown to be capable of being scaled up to50,000inputs while still exhibiting strong performance in terms of accuracy and processing time. The results show that an instance segmenting system can be implemented in less than two seconds. Using off-the-shelf hardware, demonstrate that a 3D perception system is industrially viable and competitive with a 2D perception system

    Flexible Supervised Autonomy for Exploration in Subterranean Environments

    Full text link
    While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.Comment: Field Robotics special issue: DARPA Subterranean Challenge, Advancement and Lessons Learned from the Final
    • 

    corecore