156 research outputs found

    Robust observer for uncertain linear quantum systems

    Get PDF
    In the theory of quantum dynamical filtering, one of the biggest issues is that the underlying system dynamics represented by a quantum stochastic differential equation must be known exactly in order that the corresponding filter provides an optimal performance; however, this assumption is generally unrealistic. Therefore, in this paper, we consider a class of linear quantum systems subjected to time-varying norm-bounded parametric uncertainties and then propose a robust observer such that the variance of the estimation error is guaranteed to be within a certain bound. Although in the linear case much of classical control theory can be applied to quantum systems, the quantum robust observer obtained in this paper does not have a classical analogue due to the system's specific structure with respect to the uncertainties. Moreover, by considering a typical quantum control problem, we show that the proposed robust observer is fairly robust against a parametric uncertainty of the system even when the other estimators--the optimal Kalman filter and risk-sensitive observer--fail in the estimation.Comment: 11 pages, 1 figur

    A Robust Continuous Time Fixed Lag Smoother for Nonlinear Uncertain Systems

    Full text link
    This paper presents a robust fixed lag smoother for a class of nonlinear uncertain systems. A unified scheme, which combines a nonlinear robust estimator with a stable fixed lag smoother, is presented to improve the error covariance of the estimation. The robust fixed lag smoother is based on the use of Integral Quadratic Constraints and minimax LQG control. The state estimator uses a copy of the system nonlinearity in the estimator and combines an approximate model of the delayed states to produce a smoothed signal. In order to see the effectiveness of the method, it is applied to a quantum optical phase estimation problem. Results show significant improvement in the error covariance of the estimator using fixed lag smoother in the presence of nonlinear uncertainty.Comment: 8 pages, will be presented in 52nd Conference on Decision and Contro

    Coherent-Classical Estimation for Quantum Linear Systems

    Full text link
    This paper introduces a problem of coherent-classical estimation for a class of linear quantum systems. In this problem, the estimator is a mixed quantum-classical system which produces a classical estimate of a system variable. The coherent-classical estimator may also involve coherent feedback. An example involving optical squeezers is given to illustrate the efficacy of this idea.Comment: A version of this paper will appear in the Proceedings of the 2013 Australian Control Conferenc

    Quantum control theory and applications: A survey

    Full text link
    This paper presents a survey on quantum control theory and applications from a control systems perspective. Some of the basic concepts and main developments (including open-loop control and closed-loop control) in quantum control theory are reviewed. In the area of open-loop quantum control, the paper surveys the notion of controllability for quantum systems and presents several control design strategies including optimal control, Lyapunov-based methodologies, variable structure control and quantum incoherent control. In the area of closed-loop quantum control, the paper reviews closed-loop learning control and several important issues related to quantum feedback control including quantum filtering, feedback stabilization, LQG control and robust quantum control.Comment: 38 pages, invited survey paper from a control systems perspective, some references are added, published versio

    Mixed quantum-classical linear systems synthesis and quantum feedback control designs

    Get PDF
    This thesis makes some theoretical contributions towards mixed quantum feedback network synthesis, quantum optical realization of classical linear stochastic systems and quantum feedback control designs. A mixed quantum-classical feedback network is an interconnected system consisting of a quantum system and a classical system connected by interfaces that convert quantum signals to classical signal (using homodyne detectors), and vice versa (using electro-optic modulators). In the area of mixed quantum-classical feedback networks, we present a network synthesis theory, which provides a natural framework for analysis and design for mixed linear systems. Physical realizability conditions are derived for linear stochastic differential equations to ensure that mixed systems can correspond to physical systems. The mixed network synthesis theory developed based on physical realizability conditions shows that how a classical of mixed quantum-classical systems described by linear stochastic differential equations can be built as a interconnection of linear quantum systems and linear classical systems using quantum optical devices as well as electrical and electric devices. However, an important practical problem for the implementation of mixed quantum-classical systems is the relatively slow speed of classical parts implemented with standard electrical and electronic devices, since a mixed system will not work correctly unless the electronic processing of classical devices is fast enough. Therefore, another interesting work is to show how classical linear stochastic systems build using electrical and electric devices can be physically implemented using quantum optical components. A complete procedure is proposed for a stable quantum linear stochastic system realizing a given stable classical linear stochastic system. The thesis explains how it may be possible to realize certain measurement feedback loops fully at the quantum level. In the area of quantum feedback control design, two numerical procedures based on extended linear matrix inequality (LMI) approach are proposed to design a coherent quantum controller in this thesis. The extended synthesis linear matrix inequalities are, in addition to new analysis tools, less conservative in comparison to the conventional counterparts since the optimization variables related to the system parameters in extended LMIs are independent of the symmetric Lyapunov matrix. These features may be useful in the optimal design of quantum optical networks. Time delays are frequently encountered in linear quantum feedback control systems such as long transmission lines between quantum plants and linear controllers, which may have an effect on the performance of closed-loop plant controller systems. Therefore, this thesis investigates the problem of linear quantum measurement-based feedback control systems subject to feedback-loop time delay described by linear stochastic differential equations. Several numerical procedures are proposed to design classical controllers that make quantum measurement-based feedback control systems with time delay stable and also guarantee that their desired control performance specifications are satisfied
    • …
    corecore