487 research outputs found

    Optimal exoskeleton design and effective human-in-the-loop control frameworks for rehabilitation robotics

    Get PDF
    Attention, since they decrease the cost of repetitive movement therapies, enable quantitative measurement of the patient progress and promise development of more e ective rehabilitation protocols. The goal of this dissertation is to provide systematic frameworks for optimal design of rehabilitation robots and e ective delivery of therapeutic exercises. The design framework is built upon identification and categorization of the design requirements, and satisfaction of them through several design stages. In particular, type selection is performed to ensure imperative design requirements of safety, ergonomy and wearability, optimal dimensional synthesis is undertaken to maximize global kinematic and dynamic performance defined over the singularity-free workspace volume, while workspace optimization is performed to utilize maximum singularity-free device workspace computed via Grassmann line theory. Then, humanin- the-loop controllers that ensure coupled stability of the human-robot system are implemented in the robot task space using appropriate error metrics. The design framework is demonstrated on a forearm-wrist exoskeleton, since forearm and wrist rotations are critical in performing activities of daily living and recovery of these joints is essential for achieving functional independence of patients. In particular, a non-symmetric 3RPS-R mechanism is selected as the underlying kinematics type and the performance improvements due to workspace and multi-criteria optimizations are experimentally characterized as 27 % larger workspace volume, 32 % higher position control bandwidth and 17 % increase in kinematic isotropy when compared to a similar device in the literature. The exoskeleton is also shown to feature high passive back-driveability and accurate sti ness rendering capability, even under open-loop impedance control. Local controllers to accommodate for each stage of rehabilitation therapies are designed for the forearm-wrist exoskeleton in SO(3): trajectory tracking controllers are designed for early stages of rehabilitation when severely injured patients are kept passive, impedance controllers are designed to render virtual tunnels implementing forbidden regions in the device workspace and allowing for haptic interactions with virtual environments, and passive contour tracking controllers are implemented to allow for rehabilitation exercises that emphasize coordination and synchronization of multi degrees-of-freedom movements, while leaving the exact timing along the desired contour to the patient. These local controllers are incorporated into a multi-lateral shared controller architecture, which allows for patients to train with online virtual dynamic tasks in collaboration with a therapist. Utilizing this control architecture not only enables the shift of control authority of each agent so that therapists can guide or evaluate movements of patients or share the control with them, but also enables the implementation of remote and group therapies, as well as remote assessments. The proposed control framework to deliver e ective robotic therapies can ensure active involvement of patients through online modification of the task parameters, while simultaneously guaranteeing their safety. In particular, utilizing passive velocity field control and extending it with a method for online generation of velocity fields for parametric curves, temporal, spatial and assistive aspects of a desired task can be seamlessly modified online, while ensuring passivity with respect to externally applied forces. Through human subject experiments, this control framework is shown to be e ective in delivering evidence-based rehabilitation therapies, providing assistance as-needed, preventing slacking behavior of patients, and delivering repetitive therapies without exact repetition. Lastly, to guide design of e ective rehabilitation treatment protocols, a set of healthy human subject experiments are conducted in order to identify underlying principles of adaptation mechanism of human motor control system. In these catch-trial based experiments, equivalent transfer functions are utilized during execution of rhythmic dynamic tasks. Statistical evidence suggests that i) force feedback is the dominant factor that guides human adaptation while performing fast rhythmic dynamic tasks rather than the visual feedback and ii) as the e ort required to perform the task increases, the rate of adaptation decreases; indicating a fundamental trade-o between task performance and level of force feedback provided

    Design optimization and control of a parallel lower-arm exoskeleton

    Get PDF
    Wearable force feedback robotic devices, haptic exoskeletons, are becoming increasingly common as they find widespread use in medical and virtual reality (VR) applications. Allowing users to mechanically interact with computationally mediated environments, haptic exoskeletons provide users with better “immersion” to VR environments. Design of haptic exoskeletons is a challenging task, since in addition to being ergonomic and light weight, such devices are also required to satisfy the demands of any ideal force-feedback device: ability withstand human applied forces with very high stiffness and capacity to display a full range of impedances down to the minimum value human can perceive. If not properly designed by taking these conflicting requirements into account, the interface can significantly deteriorate the transparency of displayed forces; therefore, the choice of the kinematic structure and determination of the dimensions of this kinematic structure have significant impacts on the overall performance of any haptic display independent of the control algorithm employed. In this thesis, we first propose a general framework for optimal dimensional synthesis of haptic interfaces, in particular for haptic interfaces with closed kinematic chains, with respect to multiple design objectives. We identify and categorize the relevant performance criteria for the force feedback exoskeletons and address the trade-offs between them, by applying a Pareto-front based multi-objective design optimization procedure. Utilizing a fast converging gradient-based method, the proposed framework is computational efficient. Moreover, the approach is applicable to any set of performance indices and extendable to include any number of design criteria. Subsequently, we extend this framework to assist the selection of the most appropriate kinematic structure among multiple mechanisms. Specifically, we perform a rigorous comparison between two spherical parallel mechanisms (SPMs) that satisfy the ergonomic necessities of a human forearm and wrist and select the kinematic structure that results in superior performance for force-feedback applications. Utilizing the Pareto optimal set of solutions, we also assign dimensions to this mechanism to ensure an optimal trade-off between global kinematic and dynamic performance. Following the design optimization phase, we perform kinematic and dynamic analyses of the SPM-based exoskeleton in independent coordinates to facilitate efficient simulation and real-time implementation of model based controllers. We decide on the hardware components considering human wrist torque and force limits, safety and ergonomy constraints, and present the CAD model of a prototype of the exoskeleton. Finally, we implement model based task-space position and impedance controllers in simulation and present the results of them

    Posture-Dependent Projection-Based Force Reflection Algorithms for Bilateral Teleoperators

    Get PDF
    It was previously established that the projection-based force reflection (PBFR) algorithms improve the overall stability of a force reflecting teleoperation system. The idea behind the PBFR algorithms is to identify the component of the reflected force which is compensated by interaction with the operator\u27s hand, and subsequently attenuate the residual component of the reflected force. If there is no a priori information regarding the behaviour of the human operator, the PBFR gain is selected equal to sufficiently small constant in order to guarantee stability for a wide range of human operator responses. Small PBRF gains, however, may deteriorate the transparency of a teleoperator system. In this thesis, a new method for selecting the PBFR gain is introduced which depends on human postures. Using an online human posture estimation, the introduced posture-dependent PBFR algorithm has been applied to a teleoperation system with force feedback. It is experimentally demonstrated that the developed method for selection of the PBFR gain based on human postures improves the transparency of the teleoperator system while the stability is preserved. Finally, preliminary results that deal with an extension of the developed methods towards a more realistic model of the human arm with 4 degrees of freedom and three dimensional movements are presented

    Nonlinear Modeling and Control of Driving Interfaces and Continuum Robots for System Performance Gains

    Get PDF
    With the rise of (semi)autonomous vehicles and continuum robotics technology and applications, there has been an increasing interest in controller and haptic interface designs. The presence of nonlinearities in the vehicle dynamics is the main challenge in the selection of control algorithms for real-time regulation and tracking of (semi)autonomous vehicles. Moreover, control of continuum structures with infinite dimensions proves to be difficult due to their complex dynamics plus the soft and flexible nature of the manipulator body. The trajectory tracking and control of automobile and robotic systems requires control algorithms that can effectively deal with the nonlinearities of the system without the need for approximation, modeling uncertainties, and input disturbances. Control strategies based on a linearized model are often inadequate in meeting precise performance requirements. To cope with these challenges, one must consider nonlinear techniques. Nonlinear control systems provide tools and methodologies for enabling the design and realization of (semi)autonomous vehicle and continuum robots with extended specifications based on the operational mission profiles. This dissertation provides an insight into various nonlinear controllers developed for (semi)autonomous vehicles and continuum robots as a guideline for future applications in the automobile and soft robotics field. A comprehensive assessment of the approaches and control strategies, as well as insight into the future areas of research in this field, are presented.First, two vehicle haptic interfaces, including a robotic grip and a joystick, both of which are accompanied by nonlinear sliding mode control, have been developed and studied on a steer-by-wire platform integrated with a virtual reality driving environment. An operator-in-the-loop evaluation that included 30 human test subjects was used to investigate these haptic steering interfaces over a prescribed series of driving maneuvers through real time data logging and post-test questionnaires. A conventional steering wheel with a robust sliding mode controller was used for all the driving events for comparison. Test subjects operated these interfaces for a given track comprised of a double lane-change maneuver and a country road driving event. Subjective and objective results demonstrate that the driver’s experience can be enhanced up to 75.3% with a robotic steering input when compared to the traditional steering wheel during extreme maneuvers such as high-speed driving and sharp turn (e.g., hairpin turn) passing. Second, a cellphone-inspired portable human-machine-interface (HMI) that incorporated the directional control of the vehicle as well as the brake and throttle functionality into a single holistic device will be presented. A nonlinear adaptive control technique and an optimal control approach based on driver intent were also proposed to accompany the mechatronic system for combined longitudinal and lateral vehicle guidance. Assisting the disabled drivers by excluding extensive arm and leg movements ergonomically, the device has been tested in a driving simulator platform. Human test subjects evaluated the mechatronic system with various control configurations through obstacle avoidance and city road driving test, and a conventional set of steering wheel and pedals were also utilized for comparison. Subjective and objective results from the tests demonstrate that the mobile driving interface with the proposed control scheme can enhance the driver’s performance by up to 55.8% when compared to the traditional driving system during aggressive maneuvers. The system’s superior performance during certain vehicle maneuvers and approval received from the participants demonstrated its potential as an alternative driving adaptation for disabled drivers. Third, a novel strategy is designed for trajectory control of a multi-section continuum robot in three-dimensional space to achieve accurate orientation, curvature, and section length tracking. The formulation connects the continuum manipulator dynamic behavior to a virtual discrete-jointed robot whose degrees of freedom are directly mapped to those of a continuum robot section under the hypothesis of constant curvature. Based on this connection, a computed torque control architecture is developed for the virtual robot, for which inverse kinematics and dynamic equations are constructed and exploited, with appropriate transformations developed for implementation on the continuum robot. The control algorithm is validated in a realistic simulation and implemented on a six degree-of-freedom two-section OctArm continuum manipulator. Both simulation and experimental results show that the proposed method could manage simultaneous extension/contraction, bending, and torsion actions on multi-section continuum robots with decent tracking performance (e.g. steady state arc length and curvature tracking error of 3.3mm and 130mm-1, respectively). Last, semi-autonomous vehicles equipped with assistive control systems may experience degraded lateral behaviors when aggressive driver steering commands compete with high levels of autonomy. This challenge can be mitigated with effective operator intent recognition, which can configure automated systems in context-specific situations where the driver intends to perform a steering maneuver. In this article, an ensemble learning-based driver intent recognition strategy has been developed. A nonlinear model predictive control algorithm has been designed and implemented to generate haptic feedback for lateral vehicle guidance, assisting the drivers in accomplishing their intended action. To validate the framework, operator-in-the-loop testing with 30 human subjects was conducted on a steer-by-wire platform with a virtual reality driving environment. The roadway scenarios included lane change, obstacle avoidance, intersection turns, and highway exit. The automated system with learning-based driver intent recognition was compared to both the automated system with a finite state machine-based driver intent estimator and the automated system without any driver intent prediction for all driving events. Test results demonstrate that semi-autonomous vehicle performance can be enhanced by up to 74.1% with a learning-based intent predictor. The proposed holistic framework that integrates human intelligence, machine learning algorithms, and vehicle control can help solve the driver-system conflict problem leading to safer vehicle operations

    Combining Sensors and Multibody Models for Applications in Vehicles, Machines, Robots and Humans

    Get PDF
    The combination of physical sensors and computational models to provide additional information about system states, inputs and/or parameters, in what is known as virtual sensing, is becoming increasingly popular in many sectors, such as the automotive, aeronautics, aerospatial, railway, machinery, robotics and human biomechanics sectors. While, in many cases, control-oriented models, which are generally simple, are the best choice, multibody models, which can be much more detailed, may be better suited to some applications, such as during the design stage of a new product

    A continuum robotic platform for endoscopic non-contact laser surgery: design, control, and preclinical evaluation

    Get PDF
    The application of laser technologies in surgical interventions has been accepted in the clinical domain due to their atraumatic properties. In addition to manual application of fibre-guided lasers with tissue contact, non-contact transoral laser microsurgery (TLM) of laryngeal tumours has been prevailed in ENT surgery. However, TLM requires many years of surgical training for tumour resection in order to preserve the function of adjacent organs and thus preserve the patient’s quality of life. The positioning of the microscopic laser applicator outside the patient can also impede a direct line-of-sight to the target area due to anatomical variability and limit the working space. Further clinical challenges include positioning the laser focus on the tissue surface, imaging, planning and performing laser ablation, and motion of the target area during surgery. This dissertation aims to address the limitations of TLM through robotic approaches and intraoperative assistance. Although a trend towards minimally invasive surgery is apparent, no highly integrated platform for endoscopic delivery of focused laser radiation is available to date. Likewise, there are no known devices that incorporate scene information from endoscopic imaging into ablation planning and execution. For focusing of the laser beam close to the target tissue, this work first presents miniaturised focusing optics that can be integrated into endoscopic systems. Experimental trials characterise the optical properties and the ablation performance. A robotic platform is realised for manipulation of the focusing optics. This is based on a variable-length continuum manipulator. The latter enables movements of the endoscopic end effector in five degrees of freedom with a mechatronic actuation unit. The kinematic modelling and control of the robot are integrated into a modular framework that is evaluated experimentally. The manipulation of focused laser radiation also requires precise adjustment of the focal position on the tissue. For this purpose, visual, haptic and visual-haptic assistance functions are presented. These support the operator during teleoperation to set an optimal working distance. Advantages of visual-haptic assistance are demonstrated in a user study. The system performance and usability of the overall robotic system are assessed in an additional user study. Analogous to a clinical scenario, the subjects follow predefined target patterns with a laser spot. The mean positioning accuracy of the spot is 0.5 mm. Finally, methods of image-guided robot control are introduced to automate laser ablation. Experiments confirm a positive effect of proposed automation concepts on non-contact laser surgery.Die Anwendung von Lasertechnologien in chirurgischen Interventionen hat sich aufgrund der atraumatischen Eigenschaften in der Klinik etabliert. Neben manueller Applikation von fasergeführten Lasern mit Gewebekontakt hat sich die kontaktfreie transorale Lasermikrochirurgie (TLM) von Tumoren des Larynx in der HNO-Chirurgie durchgesetzt. Die TLM erfordert zur Tumorresektion jedoch ein langjähriges chirurgisches Training, um die Funktion der angrenzenden Organe zu sichern und damit die Lebensqualität der Patienten zu erhalten. Die Positionierung des mikroskopis chen Laserapplikators außerhalb des Patienten kann zudem die direkte Sicht auf das Zielgebiet durch anatomische Variabilität erschweren und den Arbeitsraum einschränken. Weitere klinische Herausforderungen betreffen die Positionierung des Laserfokus auf der Gewebeoberfläche, die Bildgebung, die Planung und Ausführung der Laserablation sowie intraoperative Bewegungen des Zielgebietes. Die vorliegende Dissertation zielt darauf ab, die Limitierungen der TLM durch robotische Ansätze und intraoperative Assistenz zu adressieren. Obwohl ein Trend zur minimal invasiven Chirurgie besteht, sind bislang keine hochintegrierten Plattformen für die endoskopische Applikation fokussierter Laserstrahlung verfügbar. Ebenfalls sind keine Systeme bekannt, die Szeneninformationen aus der endoskopischen Bildgebung in die Ablationsplanung und -ausführung einbeziehen. Für eine situsnahe Fokussierung des Laserstrahls wird in dieser Arbeit zunächst eine miniaturisierte Fokussieroptik zur Integration in endoskopische Systeme vorgestellt. Experimentelle Versuche charakterisieren die optischen Eigenschaften und das Ablationsverhalten. Zur Manipulation der Fokussieroptik wird eine robotische Plattform realisiert. Diese basiert auf einem längenveränderlichen Kontinuumsmanipulator. Letzterer ermöglicht in Kombination mit einer mechatronischen Aktuierungseinheit Bewegungen des Endoskopkopfes in fünf Freiheitsgraden. Die kinematische Modellierung und Regelung des Systems werden in ein modulares Framework eingebunden und evaluiert. Die Manipulation fokussierter Laserstrahlung erfordert zudem eine präzise Anpassung der Fokuslage auf das Gewebe. Dafür werden visuelle, haptische und visuell haptische Assistenzfunktionen eingeführt. Diese unterstützen den Anwender bei Teleoperation zur Einstellung eines optimalen Arbeitsabstandes. In einer Anwenderstudie werden Vorteile der visuell-haptischen Assistenz nachgewiesen. Die Systemperformanz und Gebrauchstauglichkeit des robotischen Gesamtsystems werden in einer weiteren Anwenderstudie untersucht. Analog zu einem klinischen Einsatz verfolgen die Probanden mit einem Laserspot vorgegebene Sollpfade. Die mittlere Positioniergenauigkeit des Spots beträgt dabei 0,5 mm. Zur Automatisierung der Ablation werden abschließend Methoden der bildgestützten Regelung vorgestellt. Experimente bestätigen einen positiven Effekt der Automationskonzepte für die kontaktfreie Laserchirurgie

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects

    Modeling, Analysis, Force Sensing and Control of Continuum Robots for Minimally Invasive Surgery

    Get PDF
    This dissertation describes design, modeling and application of continuum robotics for surgical applications, specifically parallel continuum robots (PCRs) and concentric tube manipulators (CTMs). The introduction of robotics into surgical applications has allowed for a greater degree of precision, less invasive access to more remote surgical sites, and user-intuitive interfaces with enhanced vision systems. The most recent developments have been in the space of continuum robots, whose exible structure create an inherent safety factor when in contact with fragile tissues. The design challenges that exist involve balancing size and strength of the manipulators, controlling the manipulators over long transmission pathways, and incorporating force sensing and feedback from the manipulators to the user. Contributions presented in this work include: (1) prototyping, design, force sensing, and force control investigations of PCRs, and (2) prototyping of a concentric tube manipulator for use in a standard colonoscope. A general kinetostatic model is presented for PCRs along with identification of multiple physical constraints encountered in design and construction. Design considerations and manipulator capabilities are examined in the form of matrix metrics and ellipsoid representations. Finally, force sensing and control are explored and experimental results are provided showing the accuracy of force estimates based on actuation force measurements and control capabilities. An overview of the design requirements, manipulator construction, analysis and experimental results are provided for a CTM used as a tool manipulator in a traditional colonoscope. Currently, tools used in colonoscopic procedures are straight and exit the front of the scope with 1 DOF of operation (jaws of a grasper, tightening of a loop, etc.). This research shows that with a CTM deployed, the dexterity of these tools can be increased dramatically, increasing accuracy of tool operation, ease of use and safety of the overall procedure. The prototype investigated in this work allows for multiple tools to be used during a single procedure. Experimental results show the feasibility and advantages of the newly-designed manipulators

    Medical robots with potential applications in participatory and opportunistic remote sensing: A review

    Get PDF
    Among numerous applications of medical robotics, this paper concentrates on the design, optimal use and maintenance of the related technologies in the context of healthcare, rehabilitation and assistive robotics, and provides a comprehensive review of the latest advancements in the foregoing field of science and technology, while extensively dealing with the possible applications of participatory and opportunistic mobile sensing in the aforementioned domains. The main motivation for the latter choice is the variety of such applications in the settings having partial contributions to functionalities such as artery, radiosurgery, neurosurgery and vascular intervention. From a broad perspective, the aforementioned applications can be realized via various strategies and devices benefiting from detachable drives, intelligent robots, human-centric sensing and computing, miniature and micro-robots. Throughout the paper tens of subjects, including sensor-fusion, kinematic, dynamic and 3D tissue models are discussed based on the existing literature on the state-of-the-art technologies. In addition, from a managerial perspective, topics such as safety monitoring, security, privacy and evolutionary optimization of the operational efficiency are reviewed
    • …
    corecore