301 research outputs found

    Adaptive Algorithms

    Get PDF
    Overwhelming empirical evidence in computational science and engineering proved that self-adaptive mesh-generation is a must-do in real-life problem computational partial differential equations. The mathematical understanding of corresponding algorithms concerns the overlap of two traditional mathematical disciplines, numerical analysis and approximation theory, with computational sciences. The half workshop was devoted to the mathematics of optimal convergence rates and instance optimality of the Dörfler marking or the maximum strategy in various versions of space discretisations and time-evolution problems with all kind of applications in the efficient numerical treatment of partial differential equations

    Space-time Methods for Time-dependent Partial Differential Equations

    Get PDF
    Modern discretizations of time-dependent PDEs consider the full problem in the space-time cylinder and aim to overcome limitations of classical approaches such as the method of lines (first discretize in space and then solve the resulting ODE) and the Rothe method (first discretize in time and then solve the PDE). A main advantage of a holistic space-time method is the direct access to space-time adaptivity and to the backward problem (required for the dual problem in optimization or error control). Moreover, this allows for parallel solution strategies simultaneously in time and space. Several space-time concepts where proposed (different conforming and nonconforming space-time finite elements, the parareal method, wavefront relaxation etc.) but this topic has become a rapidly growing field in numerical analysis and scientific computing. In this workshop the focus is the development of adaptive and flexible space-time discretization methods for solving parabolic and hyperbolic space-time partial differential equations

    Space-time residual minimization for parabolic partial differential equations

    Get PDF
    Many processes in nature and engineering are governed by partial differential equations (PDEs). We focus on parabolic PDEs, that describe time-dependent phenomena like heat conduction, chemical concentration, and fluid flow. Even if we know that a unique solution exists, we can express it in closed form only under very strict circumstances. So, to understand what it looks like, we turn to numerical approximation. Historically, parabolic PDEs are solved using time-stepping. One first discretizes the PDE in space as to obtain a system of coupled ordinary differential equations in time. This system is then solved using the vast theory for ODEs. While efficient in terms of memory and computational cost, time-stepping schemes take global time steps, which are independent of spatial position. As a result, these methods cannot efficiently resolve details in localized regions of space and time. Moreover, being inherently sequential, they have limited possibilities for parallel computation. In this thesis, we take a different approach and reformulate the parabolic evolution equation as an equation posed in space and time simultaneously. Space-time methods mitigate the aforementioned issues, and moreover produce approximations to the unknown solution that are uniformly quasi-optimal. The focal point of this thesis is the space-time minimal residual (MR) method introduced by R. Andreev, that finds the approximation that minimizes both PDE- and initial error. We discuss its theoretical properties, provide numerical algorithms for its computation, and discuss its applicability in data assimilation (the problem of fusing measured data to its underlying PDE)

    hp-adaptive Galerkin Time Stepping Methods for Nonlinear Initial Value Problems

    Get PDF
    This work is concerned with the derivation of an a posteriori error estimator for Galerkin approximations to nonlinear initial value problems with an emphasis on finite-time existence in the context of blow-up. The structure of the derived estimator leads naturally to the development of both h and hp versions of an adaptive algorithm designed to approximate the blow-up time. The adaptive algorithms are then applied in a series of numerical experiments, and the rate of convergence to the blow-up time is investigated

    Adaptive Numerical Methods for PDEs

    Get PDF
    This collection contains the extended abstracts of the talks given at the Oberwolfach Conference on “Adaptive Numerical Methods for PDEs”, June 10th - June 16th, 2007. These talks covered various aspects of a posteriori error estimation and mesh as well as model adaptation in solving partial differential equations. The topics ranged from the theoretical convergence analysis of self-adaptive methods, over the derivation of a posteriori error estimates for the finite element Galerkin discretization of various types of problems to the practical implementation and application of adaptive methods

    Mini-Workshop: Adaptive Methods for Control Problems Constrained by Time-Dependent PDEs

    Get PDF
    Optimization problems constrained by time-dependent PDEs (Partial Differential Equations) are challenging from a computational point of view: even in the simplest case, one needs to solve a system of PDEs coupled globally in time and space for the unknown solutions (the state, the costate and the control of the system). Typical and practically relevant examples are the control of nonlinear heat equations as they appear in laser hardening or the thermic control of flow problems (Boussinesq equations). Specifically for PDEs with a long time horizon, conventional time-stepping methods require an enormous storage of the respective other variables. In contrast, adaptive methods aim at distributing the available degrees of freedom in an a-posteriori-fashion to capture singularities and are, therefore, most promising

    Adaptive Discontinuous Galerkin Methods for Variational Inequalities with Applications to Phase Field Models

    Get PDF
    Solutions of variational inequalities often have limited regularity. In particular, the nonsmooth parts are local, while other parts of the solution have higher regularity. To overcome this limitation, we apply hp-adaptivity, which uses a combination of locally finer meshes and varying polynomial degrees to separate the different features of the the solution. For this, we employ Discontinuous Galerkin (DG) methods and show some novel error estimates for the obstacle problem which emphasize the use in hp-adaptive algorithms. Besides this analysis, we present how to efficiently compute numerical solutions using error estimators, fast algebraic solvers which can also be employed in a parallel setup, and discuss implementation details. Finally, some numerical examples and applications to phase field models are presented
    • …
    corecore