7,786 research outputs found

    MoCoGAN: Decomposing Motion and Content for Video Generation

    Full text link
    Visual signals in a video can be divided into content and motion. While content specifies which objects are in the video, motion describes their dynamics. Based on this prior, we propose the Motion and Content decomposed Generative Adversarial Network (MoCoGAN) framework for video generation. The proposed framework generates a video by mapping a sequence of random vectors to a sequence of video frames. Each random vector consists of a content part and a motion part. While the content part is kept fixed, the motion part is realized as a stochastic process. To learn motion and content decomposition in an unsupervised manner, we introduce a novel adversarial learning scheme utilizing both image and video discriminators. Extensive experimental results on several challenging datasets with qualitative and quantitative comparison to the state-of-the-art approaches, verify effectiveness of the proposed framework. In addition, we show that MoCoGAN allows one to generate videos with same content but different motion as well as videos with different content and same motion

    Survey of state-of-the-art mixed data clustering algorithms

    Full text link
    Mixed data comprises both numeric and categorical features, and mixed datasets occur frequently in many domains, such as health, finance, and marketing. Clustering is often applied to mixed datasets to find structures and to group similar objects for further analysis. However, clustering mixed data is challenging because it is difficult to directly apply mathematical operations, such as summation or averaging, to the feature values of these datasets. In this paper, we present a taxonomy for the study of mixed data clustering algorithms by identifying five major research themes. We then present a state-of-the-art review of the research works within each research theme. We analyze the strengths and weaknesses of these methods with pointers for future research directions. Lastly, we present an in-depth analysis of the overall challenges in this field, highlight open research questions and discuss guidelines to make progress in the field.Comment: 20 Pages, 2 columns, 6 Tables, 209 Reference

    Cross-Entropy Loss and Low-Rank Features Have Responsibility for Adversarial Examples

    Full text link
    State-of-the-art neural networks are vulnerable to adversarial examples; they can easily misclassify inputs that are imperceptibly different than their training and test data. In this work, we establish that the use of cross-entropy loss function and the low-rank features of the training data have responsibility for the existence of these inputs. Based on this observation, we suggest that addressing adversarial examples requires rethinking the use of cross-entropy loss function and looking for an alternative that is more suited for minimization with low-rank features. In this direction, we present a training scheme called differential training, which uses a loss function defined on the differences between the features of points from opposite classes. We show that differential training can ensure a large margin between the decision boundary of the neural network and the points in the training dataset. This larger margin increases the amount of perturbation needed to flip the prediction of the classifier and makes it harder to find an adversarial example with small perturbations. We test differential training on a binary classification task with CIFAR-10 dataset and demonstrate that it radically reduces the ratio of images for which an adversarial example could be found -- not only in the training dataset, but in the test dataset as well

    Diverse feature visualizations reveal invariances in early layers of deep neural networks

    Full text link
    Visualizing features in deep neural networks (DNNs) can help understanding their computations. Many previous studies aimed to visualize the selectivity of individual units by finding meaningful images that maximize their activation. However, comparably little attention has been paid to visualizing to what image transformations units in DNNs are invariant. Here we propose a method to discover invariances in the responses of hidden layer units of deep neural networks. Our approach is based on simultaneously searching for a batch of images that strongly activate a unit while at the same time being as distinct from each other as possible. We find that even early convolutional layers in VGG-19 exhibit various forms of response invariance: near-perfect phase invariance in some units and invariance to local diffeomorphic transformations in others. At the same time, we uncover representational differences with ResNet-50 in its corresponding layers. We conclude that invariance transformations are a major computational component learned by DNNs and we provide a systematic method to study them.Comment: Accepted for ECCV 201

    Deep Forest

    Full text link
    Current deep learning models are mostly build upon neural networks, i.e., multiple layers of parameterized differentiable nonlinear modules that can be trained by backpropagation. In this paper, we explore the possibility of building deep models based on non-differentiable modules. We conjecture that the mystery behind the success of deep neural networks owes much to three characteristics, i.e., layer-by-layer processing, in-model feature transformation and sufficient model complexity. We propose the gcForest approach, which generates \textit{deep forest} holding these characteristics. This is a decision tree ensemble approach, with much less hyper-parameters than deep neural networks, and its model complexity can be automatically determined in a data-dependent way. Experiments show that its performance is quite robust to hyper-parameter settings, such that in most cases, even across different data from different domains, it is able to get excellent performance by using the same default setting. This study opens the door of deep learning based on non-differentiable modules, and exhibits the possibility of constructing deep models without using backpropagation

    A Comprehensive Survey on Cross-modal Retrieval

    Full text link
    In recent years, cross-modal retrieval has drawn much attention due to the rapid growth of multimodal data. It takes one type of data as the query to retrieve relevant data of another type. For example, a user can use a text to retrieve relevant pictures or videos. Since the query and its retrieved results can be of different modalities, how to measure the content similarity between different modalities of data remains a challenge. Various methods have been proposed to deal with such a problem. In this paper, we first review a number of representative methods for cross-modal retrieval and classify them into two main groups: 1) real-valued representation learning, and 2) binary representation learning. Real-valued representation learning methods aim to learn real-valued common representations for different modalities of data. To speed up the cross-modal retrieval, a number of binary representation learning methods are proposed to map different modalities of data into a common Hamming space. Then, we introduce several multimodal datasets in the community, and show the experimental results on two commonly used multimodal datasets. The comparison reveals the characteristic of different kinds of cross-modal retrieval methods, which is expected to benefit both practical applications and future research. Finally, we discuss open problems and future research directions.Comment: 20 pages, 11 figures, 9 table

    Deep Cross Polarimetric Thermal-to-visible Face Recognition

    Full text link
    In this paper, we present a deep coupled learning frame- work to address the problem of matching polarimetric ther- mal face photos against a gallery of visible faces. Polariza- tion state information of thermal faces provides the miss- ing textural and geometrics details in the thermal face im- agery which exist in visible spectrum. we propose a coupled deep neural network architecture which leverages relatively large visible and thermal datasets to overcome the problem of overfitting and eventually we train it by a polarimetric thermal face dataset which is the first of its kind. The pro- posed architecture is able to make full use of the polari- metric thermal information to train a deep model compared to the conventional shallow thermal-to-visible face recogni- tion methods. Proposed coupled deep neural network also finds global discriminative features in a nonlinear embed- ding space to relate the polarimetric thermal faces to their corresponding visible faces. The results show the superior- ity of our method compared to the state-of-the-art models in cross thermal-to-visible face recognition algorithms

    Where Is My Puppy? Retrieving Lost Dogs by Facial Features

    Full text link
    A pet that goes missing is among many people's worst fears: a moment of distraction is enough for a dog or a cat wandering off from home. Some measures help matching lost animals to their owners; but automated visual recognition is one that - although convenient, highly available, and low-cost - is surprisingly overlooked. In this paper, we inaugurate that promising avenue by pursuing face recognition for dogs. We contrast four ready-to-use human facial recognizers (EigenFaces, FisherFaces, LBPH, and a Sparse method) to two original solutions based upon convolutional neural networks: BARK (inspired in architecture-optimized networks employed for human facial recognition) and WOOF (based upon off-the-shelf OverFeat features). Human facial recognizers perform poorly for dogs (up to 60.5% accuracy), showing that dog facial recognition is not a trivial extension of human facial recognition. The convolutional network solutions work much better, with BARK attaining up to 81.1% accuracy, and WOOF, 89.4%. The tests were conducted in two datasets: Flickr-dog, with 42 dogs of two breeds (pugs and huskies); and Snoopybook, with 18 mongrel dogs.Comment: 17 pages, 8 figures, 1 table, Multimedia Tools and Application

    Modeling of Facial Aging and Kinship: A Survey

    Full text link
    Computational facial models that capture properties of facial cues related to aging and kinship increasingly attract the attention of the research community, enabling the development of reliable methods for age progression, age estimation, age-invariant facial characterization, and kinship verification from visual data. In this paper, we review recent advances in modeling of facial aging and kinship. In particular, we provide an up-to date, complete list of available annotated datasets and an in-depth analysis of geometric, hand-crafted, and learned facial representations that are used for facial aging and kinship characterization. Moreover, evaluation protocols and metrics are reviewed and notable experimental results for each surveyed task are analyzed. This survey allows us to identify challenges and discuss future research directions for the development of robust facial models in real-world conditions

    Exponential Discriminative Metric Embedding in Deep Learning

    Full text link
    With the remarkable success achieved by the Convolutional Neural Networks (CNNs) in object recognition recently, deep learning is being widely used in the computer vision community. Deep Metric Learning (DML), integrating deep learning with conventional metric learning, has set new records in many fields, especially in classification task. In this paper, we propose a replicable DML method, called Include and Exclude (IE) loss, to force the distance between a sample and its designated class center away from the mean distance of this sample to other class centers with a large margin in the exponential feature projection space. With the supervision of IE loss, we can train CNNs to enhance the intra-class compactness and inter-class separability, leading to great improvements on several public datasets ranging from object recognition to face verification. We conduct a comparative study of our algorithm with several typical DML methods on three kinds of networks with different capacity. Extensive experiments on three object recognition datasets and two face recognition datasets demonstrate that IE loss is always superior to other mainstream DML methods and approach the state-of-the-art results
    • …
    corecore