6,108 research outputs found

    Growing Regression Forests by Classification: Applications to Object Pose Estimation

    Full text link
    In this work, we propose a novel node splitting method for regression trees and incorporate it into the regression forest framework. Unlike traditional binary splitting, where the splitting rule is selected from a predefined set of binary splitting rules via trial-and-error, the proposed node splitting method first finds clusters of the training data which at least locally minimize the empirical loss without considering the input space. Then splitting rules which preserve the found clusters as much as possible are determined by casting the problem into a classification problem. Consequently, our new node splitting method enjoys more freedom in choosing the splitting rules, resulting in more efficient tree structures. In addition to the Euclidean target space, we present a variant which can naturally deal with a circular target space by the proper use of circular statistics. We apply the regression forest employing our node splitting to head pose estimation (Euclidean target space) and car direction estimation (circular target space) and demonstrate that the proposed method significantly outperforms state-of-the-art methods (38.5% and 22.5% error reduction respectively).Comment: Paper accepted by ECCV 201

    Web-based visualisation of head pose and facial expressions changes: monitoring human activity using depth data

    Full text link
    Despite significant recent advances in the field of head pose estimation and facial expression recognition, raising the cognitive level when analysing human activity presents serious challenges to current concepts. Motivated by the need of generating comprehensible visual representations from different sets of data, we introduce a system capable of monitoring human activity through head pose and facial expression changes, utilising an affordable 3D sensing technology (Microsoft Kinect sensor). An approach build on discriminative random regression forests was selected in order to rapidly and accurately estimate head pose changes in unconstrained environment. In order to complete the secondary process of recognising four universal dominant facial expressions (happiness, anger, sadness and surprise), emotion recognition via facial expressions (ERFE) was adopted. After that, a lightweight data exchange format (JavaScript Object Notation-JSON) is employed, in order to manipulate the data extracted from the two aforementioned settings. Such mechanism can yield a platform for objective and effortless assessment of human activity within the context of serious gaming and human-computer interaction.Comment: 8th Computer Science and Electronic Engineering, (CEEC 2016), University of Essex, UK, 6 page

    Consistency of random forests

    Get PDF
    Random forests are a learning algorithm proposed by Breiman [Mach. Learn. 45 (2001) 5--32] that combines several randomized decision trees and aggregates their predictions by averaging. Despite its wide usage and outstanding practical performance, little is known about the mathematical properties of the procedure. This disparity between theory and practice originates in the difficulty to simultaneously analyze both the randomization process and the highly data-dependent tree structure. In the present paper, we take a step forward in forest exploration by proving a consistency result for Breiman's [Mach. Learn. 45 (2001) 5--32] original algorithm in the context of additive regression models. Our analysis also sheds an interesting light on how random forests can nicely adapt to sparsity. 1. Introduction. Random forests are an ensemble learning method for classification and regression that constructs a number of randomized decision trees during the training phase and predicts by averaging the results. Since its publication in the seminal paper of Breiman (2001), the procedure has become a major data analysis tool, that performs well in practice in comparison with many standard methods. What has greatly contributed to the popularity of forests is the fact that they can be applied to a wide range of prediction problems and have few parameters to tune. Aside from being simple to use, the method is generally recognized for its accuracy and its ability to deal with small sample sizes, high-dimensional feature spaces and complex data structures. The random forest methodology has been successfully involved in many practical problems, including air quality prediction (winning code of the EMC data science global hackathon in 2012, see http://www.kaggle.com/c/dsg-hackathon), chemoinformatics [Svetnik et al. (2003)], ecology [Prasad, Iverson and Liaw (2006), Cutler et al. (2007)], 3

    Random Forests for Real Time 3D Face Analysis

    Get PDF
    We present a random forest-based framework for real time head pose estimation from depth images and extend it to localize a set of facial features in 3D. Our algorithm takes a voting approach, where each patch extracted from the depth image can directly cast a vote for the head pose or each of the facial features. Our system proves capable of handling large rotations, partial occlusions, and the noisy depth data acquired using commercial sensors. Moreover, the algorithm works on each frame independently and achieves real time performance without resorting to parallel computations on a GPU. We present extensive experiments on publicly available, challenging datasets and present a new annotated head pose database recorded using a Microsoft Kinec

    Hand pose recognition using a consumer depth camera

    Get PDF
    [no abstract
    • …
    corecore