9,024 research outputs found

    A new self-organizing neural gas model based on Bregman divergences

    Get PDF
    In this paper, a new self-organizing neural gas model that we call Growing Hierarchical Bregman Neural Gas (GHBNG) has been proposed. Our proposal is based on the Growing Hierarchical Neural Gas (GHNG) in which Bregman divergences are incorporated in order to compute the winning neuron. This model has been applied to anomaly detection in video sequences together with a Faster R-CNN as an object detector module. Experimental results not only confirm the effectiveness of the GHBNG for the detection of anomalous object in video sequences but also its selforganization capabilities.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    SOMvisua: Data Clustering and Visualization Based on SOM and GHSOM

    Get PDF
    Text in web pages is based on expert opinion of a large number of people including the views of authors. These views are based on cultural or community aspects, which make extracting information from text very difficult. Search in text usually finds text similarities between paragraphs in documents. This paper proposes a framework for data clustering and visualization called SOMvisua. SOMvisua is based on a graph representation of data input for Self-Organizing Map (SOM) and Growing Hierarchically Self-Organizing Map (GHSOM) algorithms. In SOMvisua, sentences from an input article are represented as graph model instead of vector space model. SOM and GHSOM clustering algorithms construct knowledge from this article

    Evolutionary Neural Gas (ENG): A Model of Self Organizing Network from Input Categorization

    Full text link
    Despite their claimed biological plausibility, most self organizing networks have strict topological constraints and consequently they cannot take into account a wide range of external stimuli. Furthermore their evolution is conditioned by deterministic laws which often are not correlated with the structural parameters and the global status of the network, as it should happen in a real biological system. In nature the environmental inputs are noise affected and fuzzy. Which thing sets the problem to investigate the possibility of emergent behaviour in a not strictly constrained net and subjected to different inputs. It is here presented a new model of Evolutionary Neural Gas (ENG) with any topological constraints, trained by probabilistic laws depending on the local distortion errors and the network dimension. The network is considered as a population of nodes that coexist in an ecosystem sharing local and global resources. Those particular features allow the network to quickly adapt to the environment, according to its dimensions. The ENG model analysis shows that the net evolves as a scale-free graph, and justifies in a deeply physical sense- the term gas here used.Comment: 16 pages, 8 figure

    Hierarchical Color Quantization with a Neural Gas Model Based on Bregman Divergences

    Get PDF
    In this paper, a new color quantization method based on a self-organized artificial neural network called the Growing Hierarchical Bregman Neural Gas (GHBNG) is proposed. This neural network is based on Bregman divergences, from which the squared Euclidean distance is a particular case. Thus, the best suitable Bregman divergence for color quantization can be selected according to the input data. Moreover, the GHBNG yields a tree-structured model that represents the input data so that a hierarchical color quantization can be obtained, where each layer of the hierarchy contains a different color quantization of the original image. Experimental results confirm the color quantization capabilities of this approach.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Techniques for clustering gene expression data

    Get PDF
    Many clustering techniques have been proposed for the analysis of gene expression data obtained from microarray experiments. However, choice of suitable method(s) for a given experimental dataset is not straightforward. Common approaches do not translate well and fail to take account of the data profile. This review paper surveys state of the art applications which recognises these limitations and implements procedures to overcome them. It provides a framework for the evaluation of clustering in gene expression analyses. The nature of microarray data is discussed briefly. Selected examples are presented for the clustering methods considered

    A survey of kernel and spectral methods for clustering

    Get PDF
    Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., K-means, SOM and neural gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clustering methods are presented as extensions of kernel K-means clustering algorithm. (C) 2007 Pattem Recognition Society. Published by Elsevier Ltd. All rights reserved

    Seeing is believing: the importance of visualization in real-world machine learning applications

    Get PDF
    The increasing availability of data sets with a huge amount of information, coded in many diff erent features, justifi es the research on new methods of knowledge extraction: the great challenge is the translation of the raw data into useful information that can be used to improve decisionmaking processes, detect relevant profi les, fi nd out relationships among features, etc. It is undoubtedly true that a picture is worth a thousand words, what makes visualization methods be likely the most appealing and one of the most relevant kinds of knowledge extration methods. At ESANN 2011, the special session "Seeing is believing: The importance of visualization in real-world machine learning applications" reflects some of the main emerging topics in the field. This tutorial prefaces the session, summarizing some of its contributions, while also providing some clues to the current state and the near future of visualization methods within the framework of Machine Learning.Postprint (published version

    Deep learning systems as complex networks

    Full text link
    Thanks to the availability of large scale digital datasets and massive amounts of computational power, deep learning algorithms can learn representations of data by exploiting multiple levels of abstraction. These machine learning methods have greatly improved the state-of-the-art in many challenging cognitive tasks, such as visual object recognition, speech processing, natural language understanding and automatic translation. In particular, one class of deep learning models, known as deep belief networks, can discover intricate statistical structure in large data sets in a completely unsupervised fashion, by learning a generative model of the data using Hebbian-like learning mechanisms. Although these self-organizing systems can be conveniently formalized within the framework of statistical mechanics, their internal functioning remains opaque, because their emergent dynamics cannot be solved analytically. In this article we propose to study deep belief networks using techniques commonly employed in the study of complex networks, in order to gain some insights into the structural and functional properties of the computational graph resulting from the learning process.Comment: 20 pages, 9 figure
    corecore