268 research outputs found

    Infant Brain Atlases from Neonates to 1- and 2-Year-Olds

    Get PDF
    Background: Studies for infants are usually hindered by the insufficient image contrast, especially for neonates. Prior knowledge, in the form of atlas, can provide additional guidance for the data processing such as spatial normalization, label propagation, and tissue segmentation. Although it is highly desired, there is currently no such infant atlas which caters for all these applications. The reason may be largely due to the dramatic early brain development, image processing difficulties, and the need of a large sample size. Methodology: To this end, after several years of subject recruitment and data acquisition, we have collected a unique longitudinal dataset, involving 95 normal infants (56 males and 39 females) with MRI scanned at 3 ages, i.e., neonate, 1-yearold, and 2-year-old. State-of-the-art MR image segmentation and registration techniques were employed, to construct which include the templates (grayscale average images), tissue probability maps (TPMs), and brain parcellation maps (i.e., meaningful anatomical regions of interest) for each age group. In addition, the longitudinal correspondences between agespecific atlases were also obtained. Experiments of typical infant applications validated that the proposed atlas outperformed other atlases and is hence very useful for infant-related studies. Conclusions: We expect that the proposed infant 0–1–2 brain atlases would be significantly conducive to structural and functional studies of the infant brains. These atlases are publicly available in our website

    Registration of brain MR images in large-scale populations

    Get PDF
    Non-rigid image registration is fundamentally important in analyzing large-scale population of medical images, e.g., T1-weighted brain MRI data. Conventional pairwise registration methods involve only two images, as the moving subject image is deformed towards the space of the template for the maximization of their in-between similarity. The population information, however, is mostly ignored, with individual images in the population registered independently with the arbitrarily selected template. By contrast, this dissertation investigates the contributions of the entire population to image registration. First, the population can provide guidance to the pairwise registration between a certain subject and the template. If the subject and an intermediate image in the same population are similar in appearances, the subject shares a similar deformation field with the intermediate image. Thus, the guidance from the intermediate image can be beneficial to the subject, in that the pre-estimated deformation field of the intermediate image initiates the estimation of the subject deformation field when the two images are registered with the identical template. Second, all images in the population can be registered towards the common space of the population using the groupwise technique. Groupwise registration differs from the traditional design of pairwise registration in that no template is pre-determined. Instead, all images agglomerate to the common space of the population simultaneously. Moreover, the common space is revealed spontaneously during image registration, without introducing any bias towards the subsequent analyses and applications. This dissertation shows that population information can contribute to both pairwise registration and groupwise registration. In particular, by utilizing the guidance from the intermediate images in the population, the pairwise registration is more robust and accurate compared to the direct pairwise registration between the subject and the template. Also, for groupwise registration, all images in the population can be aligned more accurately in the common space, although the complexity of groupwise registration increases substantially.Doctor of Philosoph

    Hierarchical alignment of breast DCE-MR images by groupwise registration and robust feature matching: Breast DCE-MR image registration

    Get PDF
    Purpose: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) shows high sensitivity in detecting breast cancer. However, its performance could be affected by patient motion during the imaging. To overcome this problem, it is necessary to correct patient motion by deformable registration, before using the DCE-MRI to detect breast cancer. However, deformable registration of DCE-MR images is challenging due to the dramatic contrast change over time (especially between the precontrast and postcontrast images). Most existing methods typically register each postcontrast image onto the precontrast image independently, without considering the dynamic contrast change after agent uptake. This could lead to the inconsistency among the aligned postcontrast images in the precontrast image space, which will eventually result in worse performance in cancer detection. In this paper, the authors present a novel hierarchical registration framework to address this problem

    Registration of longitudinal brain image sequences with implicit template and spatial–temporal heuristics

    Get PDF
    Accurate measurement of longitudinal changes of brain structures and functions is very important but challenging in many clinical studies. Also, across-subject comparison of longitudinal changes is critical in identifying disease-related changes. In this paper, we propose a novel method to meet these two requirements by simultaneously registering sets of longitudinal image sequences of different subjects to the common space, without assuming any explicit template. Specifically, our goal is to 1) consistently measure the longitudinal changes from a longitudinal image sequence of each subject, and 2) jointly align all image sequences of different subjects to a hidden common space. To achieve these two goals, we first introduce a set of temporal fiber bundles to explore the spatial-temporal behavior of anatomical changes in each longitudinal image sequence. Then, a probabilistic model is built upon the temporal fibers to characterize both spatial smoothness and temporal continuity. Finally, the transformation fields that connect each time-point image of each subject to the common space are simultaneously estimated by the expectation maximization (EM) approach, via the maximum a posterior (MAP) estimation of the probabilistic models. Promising results have been obtained in quantitative measurement of longitudinal brain changes, i.e., hippocampus volume changes, showing better performance than those obtained by either the pairwise or the groupwise only registration methods

    Scalable High-Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning

    Get PDF
    Feature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data,, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community. To address these concerns, a learning-based image registration framework is proposed that uses deep learning to discover compact and highly discriminative features upon observed imaging data. Specifically, the proposed feature selection method uses a convolutional stacked auto-encoder to identify intrinsic deep feature representations in image patches. Since deep learning is an unsupervised learning method, no ground truth label knowledge is required. This makes the proposed feature selection method more flexible to new imaging modalities since feature representations can be directly learned from the observed imaging data in a very short amount of time. Using the LONI and ADNI imaging datasets, image registration performance was compared to two existing state-of-the-art deformable image registration methods that use handcrafted features. To demonstrate the scalability of the proposed image registration framework image registration experiments were conducted on 7.0-tesla brain MR images. In all experiments, the results showed the new image registration framework consistently demonstrated more accurate registration results when compared to state-of-the-art

    The Probabilistic Active Shape Model: From Model Construction to Flexible Medical Image Segmentation

    Get PDF
    Automatic processing of three-dimensional image data acquired with computed tomography or magnetic resonance imaging plays an increasingly important role in medicine. For example, the automatic segmentation of anatomical structures in tomographic images allows to generate three-dimensional visualizations of a patient’s anatomy and thereby supports surgeons during planning of various kinds of surgeries. Because organs in medical images often exhibit a low contrast to adjacent structures, and because the image quality may be hampered by noise or other image acquisition artifacts, the development of segmentation algorithms that are both robust and accurate is very challenging. In order to increase the robustness, the use of model-based algorithms is mandatory, as for example algorithms that incorporate prior knowledge about an organ’s shape into the segmentation process. Recent research has proven that Statistical Shape Models are especially appropriate for robust medical image segmentation. In these models, the typical shape of an organ is learned from a set of training examples. However, Statistical Shape Models have two major disadvantages: The construction of the models is relatively difficult, and the models are often used too restrictively, such that the resulting segmentation does not delineate the organ exactly. This thesis addresses both problems: The first part of the thesis introduces new methods for establishing correspondence between training shapes, which is a necessary prerequisite for shape model learning. The developed methods include consistent parameterization algorithms for organs with spherical and genus 1 topology, as well as a nonrigid mesh registration algorithm for shapes with arbitrary topology. The second part of the thesis presents a new shape model-based segmentation algorithm that allows for an accurate delineation of organs. In contrast to existing approaches, it is possible to integrate not only linear shape models into the algorithm, but also nonlinear shape models, which allow for a more specific description of an organ’s shape variation. The proposed segmentation algorithm is evaluated in three applications to medical image data: Liver and vertebra segmentation in contrast-enhanced computed tomography scans, and prostate segmentation in magnetic resonance images

    Data driven approaches for investigating molecular heterogeneity of the brain

    Get PDF
    It has been proposed that one of the clearest organizing principles for most sensory systems is the existence of parallel subcircuits and processing streams that form orderly and systematic mappings from stimulus space to neurons. Although the spatial heterogeneity of the early olfactory circuitry has long been recognized, we know comparatively little about the circuits that propagate sensory signals downstream. Investigating the potential modularity of the bulb’s intrinsic circuits proves to be a difficult task as termination patterns of converging projections, as with the bulb’s inputs, are not feasibly realized. Thus, if such circuit motifs exist, their detection essentially relies on identifying differential gene expression, or “molecular signatures,” that may demarcate functional subregions. With the arrival of comprehensive (whole genome, cellular resolution) datasets in biology and neuroscience, it is now possible for us to carry out large-scale investigations and make particular use of the densely catalogued, whole genome expression maps of the Allen Brain Atlas to carry out systematic investigations of the molecular topography of the olfactory bulb’s intrinsic circuits. To address the challenges associated with high-throughput and high-dimensional datasets, a deep learning approach will form the backbone of our informatic pipeline. In the proposed work, we test the hypothesis that the bulb’s intrinsic circuits are parceled into distinct, parallel modules that can be defined by genome-wide patterns of expression. In pursuit of this aim, our deep learning framework will facilitate the group-registration of the mitral cell layers of ~ 50,000 in-situ olfactory bulb circuits to test this hypothesis
    • …
    corecore