6 research outputs found

    Groups with right-invariant multiorders

    Full text link
    A Cayley object for a group G is a structure on which G acts regularly as a group of automorphisms. The main theorem asserts that a necessary and sufficient condition for the free abelian group G of rank m to have the generic n-tuple of linear orders as a Cayley object is that m>n. The background to this theorem is discussed. The proof uses Kronecker's Theorem on diophantine approximation.Comment: 9 page

    Multiorders in amenable group actions

    Full text link
    The paper offers a thorough study of multiorders and their applications to measure-preserving actions of countable amenable groups. By a~{\em multiorder} on a~countable group we mean any probability measure ฮฝ\nu on the collection O~\tilde{\mathcal{O}} of linear orders of type Z\mathbb Z on GG, invariant under the natural action of GG on such orders. Every free measure-preserving GG-action (X,ฮผ,G)(X,\mu,G) has a~multiorder (O~,ฮฝ,G)(\tilde{\mathcal{O}},\nu,G) as a factor and has the same orbits as the Z\mathbb Z-action (X,ฮผ,S)(X,\mu,S), where SS is the \emph{successor map} determined by the multiorder factor. Moreover, the sub-sigma-algebra ฮฃO~\Sigma_{\tilde{\mathcal{O}}} associated with the multiorder factor is invariant under SS, which makes the corresponding Z\mathbb Z-action (O~,ฮฝ,S~)(\tilde{\mathcal{O}},\nu,\tilde S) a factor of (X,ฮผ,S)(X,\mu,S). We prove that the entropy of any GG-process generated by a finite partition of XX, conditional with respect to ฮฃO~\Sigma_{\tilde{\mathcal{O}}}, is preserved by the orbit equivalence with (X,ฮผ,S)(X,\mu,S). Furthermore, this entropy can be computed in terms of the so-called random past, by a formula analogous to h(ฮผ,T,P)=H(ฮผ,PโˆฃPโˆ’) h(\mu,T,\mathcal P)=H(\mu,\mathcal P|\mathcal{P}^-) known for Z\mathbb Z-actions. The above fact is then applied to prove a variant of a result by Rudolph and Weiss. The original theorem states that orbit equivalence between free actions of countable amenable groups preserves conditional entropy with respect to a~sub-sigma-algebra ฮฃ\Sigma, as soon as the ``orbit change'' is measurable with respect to ฮฃ\Sigma. In our variant, we replace the measurability assumption by a~simpler one: ฮฃ\Sigma should be invariant under both actions and the actions on the resulting factor should be free. In conclusion we provide a characterization of the Pinsker sigma-algebra of any GG-process in terms of an appropriately defined remote past arising from a multiorder.Comment: 36 pages, 2 figures, Changes: slightly changed formulation and proof of Theorem 7.4, some remarks adde

    Oscillatory Integrals, Spectral Multiplier Operators, Semilinear Elliptic Equations, and Pseudodifferential Calculus on Carnot Manifolds

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€, 2015. 2. Raphael Ponge.๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ์€ ํฌ๊ฒŒ ๋‹ค์Œ์˜ ์„ธ ๋ถ€๋ถ„์œผ๋กœ ๋‚˜๋ˆ„์–ด์ ธ ์žˆ๋‹ค์„ ํ˜•์ž‘์šฉ์†Œ์˜ ์ •๋ฐ€ํ•œ ๊ณ„์ธก, ๋ฐ˜์„ ํ˜• ํƒ€์›ํ˜• ๋ฐฉ์ •์‹, ๊ทธ๋ฆฌ๊ณ  ์บ๋†‹ ๋‹ค์–‘์ฒด์œ„์—์„œ์˜ ์˜๋ฏธ๋ถ„ ์—ฐ์‚ฐ. ์ด ์ฃผ์ œ๋“ค์€ ์ง์ ‘์ ์ด๊ฑฐ๋‚˜ ๊ฐ„์ ‘์ ์œผ๋กœ ์„œ๋กœ ์—ฐ๊ด€์ด ๋˜์–ด์žˆ๋‹ค. ์ฒซ ๋ถ€๋ถ„์˜ ์ €์ž์˜ ๋…ผ๋ฌธ [CH1, CH2, CH3] ์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•˜๊ณ  ์ง„๋™์ž‘์šฉ์†Œ์™€ ๋ถ„๊ด‘ ๊ณฑ ์—ฐ์‚ฐ์ž์— ๊ด€ํ•œ ์ •๋ฐ€ ๊ณ„์ธก์„ ์–ป๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์ข€ ๋” ๊ตฌ์ฒด์ ์œผ๋กœ, ์ฒซ๋ฒˆ์งธ ๋…ผ๋ฌธ [CH1]์—์„œ๋Š” ํ•˜์ด์  ๋ฒ ๋ฅด๊ทธ ๊ตฐ์—์„œ ์ •์˜๋œ ๊ฐ•ํ•œ ํŠน์ˆ˜์„ฑ์„ ๊ฐ€์ง„ ์ž‘์šฉ์†Œ์˜ L2L^2 ๊ณต๊ฐ„๊ณผ HpH^p ๊ณต๊ฐ„์—์„œ์˜ ๋ฐ”์šด๋“œ๋ฅผ ๋ณด์ธ๋‹ค. L2L^2 ๊ณต๊ฐ„ ๋ฐ”์šด๋“œ๋ฅผ ์œ„ํ•ด ํ‡ดํ™”๋œ ํ˜•ํƒœ์˜ ์ง„๋™์ž‘์šฉ์†Œ ๊ณ„์ธก์„ ์ด์šฉํ•˜๊ณ , HpH^p ๊ณต๊ฐ„ ๋ฐ”์šด๋“œ๋ฅผ ์œ„ํ•ด์„œ๋Š” ํ•˜๋”” ๊ณต๊ฐ„์˜ ๋ถ„์ž ๋ถ„ํ•ด๋ฅผ ์ด์šฉํ•œ๋‹ค. ๋‘๋ฒˆ์งธ ๋…ผ๋ฌธ [CH2] ์—์„œ๋Š” ์ธต์ƒํ™”๋œ ๊ตฐ๋“ค์—์„œ ๊ณฑ ์ž‘์šฉ์†Œ๋“ค์˜ ์ตœ๋Œ€ํ•จ์ˆ˜๋“ค์— ๋Œ€ํ•œ ์ •๋ฐ€ํ™”๋œ LpL^p ๋ฐ”์šด๋“œ๋ฅผ ๊ตฌํ•œ๋‹ค. ๋˜ํ•œ ์ธต์ƒํ™”๋œ ๊ตฐ๋“ค์˜ ๊ณฑํ˜•ํƒœ์˜ ๊ตฐ์—์„œ๋„ ๊ด€๋ จ๋œ ๋ฐ”์šด๋“œ๋ฅผ ์–ป๊ณ , ํ•˜๋‚˜์˜ ์‘์šฉ์œผ๋กœ ํ•˜์ด์  ๋ฒ ๋ฅด๊ทธ ๊ตฐ์—์„œ ๊ฒฐํ•ฉ ๋ถ„๊ด‘ ๊ณฑ ์ž‘์šฉ์†Œ๋“ค์˜ ์ตœ๋Œ€ํ•จ์ˆ˜์— ๋Œ€ํ•ด์„œ๋„ ์ •๋ฐ€ํ™”๋œ LpL^p ๋ฐ”์šด๋“œ๋ฅผ ์–ป๋Š”๋‹ค. ์„ธ๋ฒˆ์งธ ๋…ผ๋ฌธ [CH3]์—์„œ๋Š” ๋ฐ”์šด๋“œ๊ฐ€ ์—†๋Š” ์˜น๊ณจํ•œ ๋‹ค์–‘์ฒด ์œ„์—์„œ ์ •์˜๋œ ์–‘์˜ ์ž์ฒด ์ˆ˜๋ฐ˜ ํƒ€์›ํ˜• ๋ฏธ๋ถ„ ์ž‘์šฉ์†Œ PP๊ฐ€ ์žˆ์„๋•Œ, ํ—ค๋ฅด๋งŒ๋”-๋ฏธํ˜๋ฆฐ ์กฐ๊ฑด์•„๋ž˜์—์„œ ์ด ์ž‘์šฉ์†Œ์™€ ๊ด€๋ จ๋œ ๋ถ„๊ด‘ ๊ณฑ ์ž‘์šฉ์†Œ๋“ค์˜ ์ตœ๋Œ€ํ•จ์ˆ˜์— ๋Œ€ํ•œ ์ •๋ฐ€ํ™”๋œ LpL^p ๋ฐ”์šด๋“œ๋ฅผ ๊ตฌํ•œ๋‹ค. ๋‘๋ฒˆ์งธ ๋ถ€๋ถ„์€ ๋ฐ˜์„ ํ˜• ํƒ€์›ํ˜• ๋ฐฉ์ •์‹๋“ค์— ๋Œ€ํ•œ ๊ณต๋ถ€์ด๊ณ , ๋…ผ๋ฌธ [CH4]์™€ ๊ณต๋™ ๋…ผ๋ฌธ [CKL, CKL2, CS1]์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋˜์–ด์žˆ๋‹ค. ๋…ผ๋ฌธ [CH4]์—์„œ ์šฐ๋ฆฌ๋Š” ์œ ํ•œ ์˜์—ญ๋‚ด์—์„œ ๋ถ„์ˆ˜ ๋ผํ”Œ๋ผ์‹œ์•ˆ์„ ํฌํ•จํ•˜๋ฉฐ ๊ฐ•ํ•˜๊ฒŒ ์—ฎ์—ฌ์žˆ๋Š” ์‹œ์Šคํ…œ์— ๋Œ€ํ•ด์„œ ์—ฐ๊ตฌํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์šฐ๋ฆฌ๋Š” ์กด์žฌ์„ฑ๊ณผ ๋น„์กด์žฌ์„ฑ์— ๊ด€ํ•œ ๊ฒฐ๊ณผ๋“ค์„ ๋ณด์ด๊ณ , ๊ธฐ๋‹ค์Šค-์Šคํ”„๋Ÿญ ํ˜•ํƒœ์˜ ์„  ๊ณ„์ธก, ๋Œ€์นญ ๊ตฌ์กฐ์— ๊ด€ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ธ๋‹ค. ์—ฌ๊ธฐ์„œ ์šฐ๋ฆฌ๋Š” ๋…ผ๋ฌธ [CT, T]์—์„œ ๋ณด์—ฌ์กŒ๋˜ ๋น„์„ ํ˜• ํƒ€์›ํ˜• ๋ฐฉ์ •์‹๋“ค์— ๋Œ€ํ•œ ์„  ๊ณ„์ธก์— ๋Œ€ํ•ด์„œ ์ƒˆ๋กœ์šด ์ฆ๋ช…์„ ์–ป๋Š”๋‹ค. ๊น€์Šนํ˜ ๋ฐ•์‚ฌ๋‹˜, ์ด๊ธฐ์•” ๊ต์ˆ˜๋‹˜๊ณผ์˜ ๊ณต๋™ ๋…ผ๋ฌธ์ธ [CKL]์—์„œ๋Š” ๋ถ„์ˆ˜ ๋ผํ”Œ๋ผ์‹œ์•ˆ์„ ํฌํ•จํ•œ ๋น„์„ ํ˜• ํƒ€์›ํ˜• ๋ฐฉ์ •์‹๋“ค์— ๋Œ€ํ•ด์„œ ์ž„๊ณ„์ง€์ˆ˜์™€ ๊ด€๋ จ๋˜์–ด ์ตœ์†Œ ์—๋„ˆ์ง€ ํ•ด๋“ค์˜ ์ ๊ทผ ํ–‰๋™์„ ๊ณต๋ถ€ํ•˜๊ณ , ๋‹ค์ค‘์œผ๋กœ ๋ฒ„๋ธ”๋งํ•˜๋Š” ํ•ด๋“ค์˜ ์กด์žฌ์„ฑ์„ ๊ณต๋ถ€ํ•œ๋‹ค. ์ด๊ฒƒ์€ Han (1991) [H] ๊ณผ Rey (1990) [R] ๊ฒฐ๊ณผ์˜ ๋น„๊ตญ๋ถ€์  ๋ฒ„์ „์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ์„์ง„๋ช… ๊ต์ˆ˜๋‹˜๊ณผ ํ•จ๊ป˜ ์—ฐ๊ตฌํ•œ ๋…ผ๋ฌธ [CS1]์—์„œ ์šฐ๋ฆฌ๋Š” ์˜น๊ณจ์„ฑ์ด ์—†๋Š” ๋น„๊ตญ๋ถ€์  ๋ฐ˜์„ ํ˜• ํƒ€์›ํ˜• ๋ฐฉ์ •์‹์— ๋Œ€ํ•ด์„œ ๊ณต๋ถ€ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์šฐ๋ฆฌ๋Š” ์œ ํ•œ ์˜์—ญ๋‚ด์—์„œ ๋ถ„์ˆ˜ ๊ณ„์ˆ˜ ๋ฒ„์ „์˜ ๋ธŒ๋ ˆ์ง€์Šค-๋‹ˆ๋ Œ๋ฒ„๋ฅด๊ทธ ๋ฌธ์ œ๊ฐ€ ๋ฌดํ•œํ•ด๋ฅผ ๊ฐ–๋Š”๋‹ค๋Š” ๊ฒƒ์„ ์ฆ๋ช…ํ•œ๋‹ค. ์ด ํŒŒํŠธ์˜ ๋งˆ์ง€๋ง‰ ์ฑ•ํ„ฐ๋Š” ๊น€์Šนํ˜ ๋ฐ•์‚ฌ๋‹˜, ์ด๊ธฐ์•” ๊ต์ˆ˜๋‹˜๊ณผ์˜ ๊ณต๋™ ์—ฐ๊ตฌ ๋…ผ๋ฌธ [CKL2] ์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์˜ ๋ชฉ์ ์€ 3์ฐจ์› ์ด์ƒ์—์„œ ๋ ˆ์ธ-์— ๋ด-ํŒŒ์šธ๋Ÿฌ ๋ฐฉ์ •์‹์˜ ์ž„๊ณ„์ง€์ˆ˜๊ทผ์ฒ˜์—์„œ ๋‹ค์ค‘ ๋ฒ„๋ธ”๋งํ•˜๋Š” ํ•ด๋“ค์— ๋Œ€ํ•œ ์งˆ์  ์„ฑ์งˆ๋“ค์„ ์–ป๋Š”๋ฐ ์žˆ๋‹ค. ๊ฐ๊ฐ์˜ mm ๋ฒ„๋ธ” ํ•ด๋“ค์—์„œ ์„ ํ˜•ํ™”๋œ ๋ฌธ์ œ๋ฅผ ๊ณต๋ถ€ํ•˜์—ฌ, ์šฐ๋ฆฌ๋Š” ์ฒ˜์Œ (n+2)m(n+2)m๊ฐœ์˜ ๊ณ ์œ ํ•จ์ˆ˜์™€ ๊ณ ์œ ์น˜์— ๋Œ€ํ•ด์„œ ์ •ํ™•ํ•œ ๊ณ„์ธก๋“ค์„ ๋ณด์ธ๋‹ค. ํŠน๋ณ„ํžˆ, ์šฐ๋ฆฌ๋Š” 4์ฐจ์›์ด์ƒ์—์„œ ๋‹ค์ค‘ ๋ฒ„๋ธ” ํ•ด์˜ ๋ชจ์Šค-์ธ๋ฑ์Šค๊ฐ€ ๊ทธ๋ž€ํ•จ์ˆ˜, ๋กœ๋นˆํ•จ์ˆ˜๋“ค์˜ ์ผ์ฐจ, ์ด์ฐจ ๋ฏธ๋ถ„๋“ค๋กœ ์ด๋ฃจ์–ด์ง„ ๋Œ€์นญ ํ–‰๋ ฌ๋“ค๋กœ ๊ทœ๋ช…๋˜๋œ๋‹ค๋Š” Bahri-Li-Rey (1995) ์— ์˜ํ•œ ๊ณ ์ „์ ์ธ ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์ฆ๋ช…์„ ์ œ์‹œํ•œ๋‹ค. ์šฐ๋ฆฌ์˜ ์ฆ๋ช…์€ 3์ฐจ์›์ผ ๊ฒฝ์šฐ์—๋„ ์ ์šฉ์ด ๋œ๋‹ค. ์„ธ๋ฒˆ์งธ ํŒŒํŠธ๋Š” ๋ผํŒŒ์—˜ ํฐ์ฆˆ๊ต์ˆ˜๋‹˜๊ณผ ํ•จ๊ป˜ํ•œ ๋…ผ๋ฌธ [CP1, CP2]๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์“ฐ์—ฌ์กŒ๋‹ค. ๋…ผ๋ฌธ [CP1] ์—์„œ๋Š” ์บ๋†‹ ๋‹ค์–‘์ฒด์˜ ๋‚ด๋ถ€์ ์œผ๋กœ ์ฃผ์–ด์ง„ ์ ‘ํ•œ ๊ตฐ ๋‹ค๋ฐœ๋“ค์„ ์ •์˜ํ•˜๊ณ  ์šฐ์„ ์  ์ขŒํ‘œ์— ๋Œ€ํ•ด์„œ ๊ณต๋ถ€๋ฅผ ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด์„œ ์บ๋†‹ ๋‹ค์–‘์ฒด์˜ ๋งค๋ˆํ•œ ์ ‘ ์ด๊ตฐ์„ ์ •์˜ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณต๋ถ€๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ๋…ผ๋ฌธ [CP2] ์—์„œ๋Š” ์บ๋†‹ ๋‹ค์–‘์ฒด์œ„์—์„œ์˜ ์˜๋ฏธ๋ถ„ ์ž‘์šฉ์†Œ์— ๋Œ€ํ•œ ๊ณต๋ถ€๋ฅผ ํ•ฉ๋‹ˆ๋‹ค. ์ ์ ˆํ•œ ์˜๋ฏธ๋ถ„ ์ž‘์šฉ์†Œ๋“ค์˜ ๋ชจ์ž„์„ ์ •์˜ํ•˜๊ณ  ์ด ์ž‘์šฉ์†Œ๋“ค์˜ ๊ณ„์‚ฐ๋ฒ•์„ ์ •ํ™•ํžˆ ๊ตฌํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ๋Š”, ๊ฒฐํ•ฉ, ์ˆ˜๋ฐ˜ ์ž‘์šฉ์†Œ, ์ขŒํ‘œ ๋ณ€ํ™˜์— ๊ด€ํ•œ ๊ตฌ์ฒด์ ์ธ ์ปค๋„ ์ „๊ฐœ๋ฅผ ๊ตฌํ•œ๋‹ค. ์ด๊ฒƒ์„ ํ†ตํ•ด ์šฐ๋ฆฌ๋Š” ์•ฝํ•œ ํƒ€์›์„ฑ์„ ๊ฐ€์ง„ ๋ฏธ๋ถ„ ์ž‘์šฉ์†Œ๋“ค์˜ ์—ญ์˜ ๊ตฌ์ฒด์ ์ธ ์ปค๋„ ์ „๊ฐœ ํ‘œํ˜„์„ ์–ป์–ด๋‚ผ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๊ด€๋ จ๋œ ์—ด ๋ฏธ๋ถ„ ์ž‘์šฉ์†Œ์— ๋Œ€ํ•œ ์—ด ์ปค๋„ ์ „๊ฐœ๋„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ์ด๊ฒƒ์˜ ํ•œ ์‘์šฉ์œผ๋กœ ์ผ€๋†‹ ๋‹ค์–‘์ฒด์œ„์—์„œ์˜ ๋ถ„๊ด‘ ๋ฐด๋“œ์˜ ์„ฑ์งˆ์„ ๊ณต๋ถ€ํ•  ์ˆ˜ ์žˆ๋‹ค.1. Introduction 1.1 Oscillatory Integrals and Spectral Mutiplier Operators 1.1.1 L2 and Hp boundedness of strongly singular operators and oscillating operators on Heisenberg groups 1.1.2 Maximal multiplier on Stratified groups and compact manfiolds without boundary 1.2 Semilinear Elliptic Equations and Fractional Laplacians 1.2.1 On strongly indefinite systems involving the fractional Laplacian 1.2.2 behavior of solutions for nonlinear elliptic problems with the fractional Laplacian 1.2.3 Infinitely many solutions for semilinear nonlocal elliptic equations under noncompact settings 1.2.4 Qualitative properties of multi-bubble solutions for nonlinear elliptic equations involving critical exponents 1.3 Pseudodifferential Calculus on Carnot Manifolds 1.3.1 Privileged coordinates and Tangent groupoid for Carnot manifolds 1.3.2 Pseudodierential calculus on Carnot manifolds Part 1. Oscillatory Integrals and Spectral Mutiplier Operators 2 L2 and Hp boundedness of strongly singular operators and oscillating operators on Heisenberg groups [Ch1] 2.1 Introduction 2.2 Dyadic decomposition and Localization 2.3 L2 estimates 2.4 Hardy spaces on the Heisenberg groups 2.5 Hp estimates 2.6 Necessary conditions 3 Maximal functions for multipliers on stratified groups [Ch2] 3.1 Introduction 3.2 Kernels of multipliers on Stratified groups 3.3 Martingales on homogeneous space and its application to maximal multipliers 3.4 Maximal multipliers on product spaces 3.5 Bound of maximal multiplier on product spaces 4 Maximal functions of multipliers on compact manifolds without boundary [Ch3] 4.1 Introduction 4.2 Preliminaries 4.3 The proof of Proposition 4.2.2 4.4 Localization of the operator A(mP) 4.5 Properties of the kernels and the Hardy-Littlewood maximal funtion 4.6 Martingale operators and the proof of Proposition 4.2.3 II Semilinear Elliptic Equations and Fractional Laplacians 5 On strongly indefinite systems involving the fractional Laplacian [Ch4] 5.1 Introduction 5.2 Preliminaries 5.2.1 Spectral definition of the fractional Sobolev spaces and fractional Laplacians 5.2.2 Extended problems of nonlinear systems 5.2.3 Definition of weak solutions 5.2.4 The sobolev embedding 5.2.5 Greens functions and the Robin function 5.3 The integral estimates 5.4 The proof of Theorem 5.1.1 5.5 On the nonlinear system (5.1) 6 Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian [CKL] 6.1 Introduction 6.2 Preliminaries 6.2.1 Sharp Sobolev and trace inequalities 6.2.2 Greens functions and the Robin function 6.2.3 Maximum principle 6.2.4 Properties of the Robin function 6.3 The asymptotic behavior 6.4 Uniform boundedness 6.5 Location of the blowup point 6.6 Construction of solutions for (6.1) concentrating at multiple points 6.6.1 Finite dimensional reduction 6.6.2 The reduced problem 6.6.3 Definition of stable critical sets and conclusion of the proofs of Theorems 6.7 The subcritical problem Appendices 6.A Proof of Proposition 6.4.7 6.B Technical computations in the proof of Theorem 6.1.4 6.B.1 Estimation of the projected bubbles 6.B.2 Basic estimates 6.B.3 Proof of Proposition 6.6.4 7 Infinitely many solutions for semilinear nonlocal elliptic equations under noncompact settings [ChS] 7.1 Introduction 7.2 Mathematical frameworks and preliminaries 7.2.1 Fractional Sobolev spaces, fractional Laplacians and fractional harmonic extensions 7.2.2 Weighted Sobolev and Sobolev-trace inequalities 7.2.3 Useful lemmas 7.3 Settings and Ideas for the proof of Theorem 7.1.2 7.4 A refined norm estimate 7.5 Integral estimates 7.6 End of proofs of main theorems Appendices 7.A Proof of Lemma 7.5.2 7.B A variant of Mosers iteration method 7.C Local Pohozaev identity 8 Qualitative properties of multi-bubble solutions for nonlinear elliptic equations involving critical exponents [CKL2] 8.1 Introduction 8.2 Preliminaries 8.3 Proof of Theorem 8.1.1 8.4 Upper bounds for the l-th eigenvalues and asymptotic behavior of the `-th eigenfunctions, m + 1 =< l =< (n + 1)m 8.5 A further analysis on asymptotic behavior of the l-th eigenfunctions, m + 1 =< l =< (n + 1)m 8.6 Characterization of the `-th eigenvalues, m + 1 =< l =< (n + 1)m 8.7 Estimates for the `-th eigenvalues and eigenfunctions, (n + 1)(m + 1) =< l =< (n + 2)m Appendices 8.A A moving sphere argument III Pseudodifferential Calculus on Carnot Manifolds 9 Privileged Coordinates and Tangent Groupoid for Carnot Manifolds 9.1 Introduction 9.2 Carnot Manifolds: Definitions and Main Examples 9.3 The Tangent Group Bundle of a Carnot Manifold 9.3.1 The tangent Lie algebra bundle g M 9.3.2 The tangent Lie group bundle GM 9.3.3 Description of ga M in terms of left-invariant vector fields 9.4 Privileged Coordinates for Carnot Manifolds 9.5 Nilpotent Approximation of Vector Fields 9.6 Carnot Coordinates 9.7 The Tangent Groupoid of a Carnot Manifold 9.7.1 Differentiable groupoids 9.7.2 The tangent groupoid of a Carnot manifold Appendices 9.A A matrix computation for degree 10 Pseudodifferential calculus 10.1 Classes of Symbol and Pseudodifferential operators 10.1.1 Definition of PsiHDOs 10.2 Convolutions on nilpotent Lie groups 10.3 Pseudodifferential calculus 10.3.1 Composition of Pseudodifferential operators on vector fields 10.3.2 Invariance theorem of peudodifferential operators 10.3.3 Adjoint of pseudodifferential operators 10.4 Mapping properties on Lp spaces 10.5 Rockland condition and the construction of parametrix 10.6 Heat equation 10.7 Holomorphic families of PsiHDOs 10.7.1 Kernels of holomorphic PsiHDOs 10.8 Complex powers of PsiHDOs 10.9 Spectral asymptotics for Hypoelliptic operators Appendices 10.A Review on the class of symbols and kernels given at a point 10.A.1 Micellaneous 10.B Technical computations 10.C Some properties of distributionsDocto

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed
    corecore