413 research outputs found

    Groupoids, imaginaries and internal covers

    Full text link
    Let TT be a first-order theory. A correspondence is established between internal covers of models of TT and definable groupoids within TT. We also consider amalgamations of independent diagrams of algebraically closed substructures, and find strong relation between: covers, uniqueness for 3-amalgamation, existence of 4-amalgamation, imaginaries of T^\si, and definable groupoids. As a corollary, we describe the imaginary elements of families of finite-dimensional vector spaces over pseudo-finite fields.Comment: Local improvements; thanks to referee of Turkish Mathematical Journal. First appeared in the proceedings of the Paris VII seminar: structures alg\'ebriques ordonn\'ee (2004/5

    The Galois group of a stable homotopy theory

    Full text link
    To a "stable homotopy theory" (a presentable, symmetric monoidal stable ∞\infty-category), we naturally associate a category of finite \'etale algebra objects and, using Grothendieck's categorical machine, a profinite group that we call the Galois group. We then calculate the Galois groups in several examples. For instance, we show that the Galois group of the periodic E∞\mathbf{E}_\infty-algebra of topological modular forms is trivial and that the Galois group of K(n)K(n)-local stable homotopy theory is an extended version of the Morava stabilizer group. We also describe the Galois group of the stable module category of a finite group. A fundamental idea throughout is the purely categorical notion of a "descendable" algebra object and an associated analog of faithfully flat descent in this context.Comment: 93 pages. To appear in Advances in Mathematic

    Sets in homotopy type theory

    Get PDF
    Homotopy Type Theory may be seen as an internal language for the ∞\infty-category of weak ∞\infty-groupoids which in particular models the univalence axiom. Voevodsky proposes this language for weak ∞\infty-groupoids as a new foundation for mathematics called the Univalent Foundations of Mathematics. It includes the sets as weak ∞\infty-groupoids with contractible connected components, and thereby it includes (much of) the traditional set theoretical foundations as a special case. We thus wonder whether those `discrete' groupoids do in fact form a (predicative) topos. More generally, homotopy type theory is conjectured to be the internal language of `elementary' ∞\infty-toposes. We prove that sets in homotopy type theory form a ΠW\Pi W-pretopos. This is similar to the fact that the 00-truncation of an ∞\infty-topos is a topos. We show that both a subobject classifier and a 00-object classifier are available for the type theoretical universe of sets. However, both of these are large and moreover, the 00-object classifier for sets is a function between 11-types (i.e. groupoids) rather than between sets. Assuming an impredicative propositional resizing rule we may render the subobject classifier small and then we actually obtain a topos of sets

    Groupoid sheaves as quantale sheaves

    Get PDF
    Several notions of sheaf on various types of quantale have been proposed and studied in the last twenty five years. It is fairly standard that for an involutive quantale Q satisfying mild algebraic properties the sheaves on Q can be defined to be the idempotent self-adjoint Q-valued matrices. These can be thought of as Q-valued equivalence relations, and, accordingly, the morphisms of sheaves are the Q-valued functional relations. Few concrete examples of such sheaves are known, however, and in this paper we provide a new one by showing that the category of equivariant sheaves on a localic etale groupoid G (the classifying topos of G) is equivalent to the category of sheaves on its involutive quantale O(G). As a means towards this end we begin by replacing the category of matrix sheaves on Q by an equivalent category of complete Hilbert Q-modules, and we approach the envisaged example where Q is an inverse quantal frame O(G) by placing it in the wider context of stably supported quantales, on one hand, and in the wider context of a module theoretic description of arbitrary actions of \'etale groupoids, both of which may be interesting in their own right.Comment: 62 pages. Structure of preprint has changed. It now contains the contents of former arXiv:0807.3859 (withdrawn), and the definition of Q-sheaf applies only to inverse quantal frames (Hilbert Q-modules with enough sections are given no special name for more general quantales
    • …
    corecore