4,697 research outputs found

    Scheduling to Minimize Total Weighted Completion Time via Time-Indexed Linear Programming Relaxations

    Full text link
    We study approximation algorithms for scheduling problems with the objective of minimizing total weighted completion time, under identical and related machine models with job precedence constraints. We give algorithms that improve upon many previous 15 to 20-year-old state-of-art results. A major theme in these results is the use of time-indexed linear programming relaxations. These are natural relaxations for their respective problems, but surprisingly are not studied in the literature. We also consider the scheduling problem of minimizing total weighted completion time on unrelated machines. The recent breakthrough result of [Bansal-Srinivasan-Svensson, STOC 2016] gave a (1.5−c)(1.5-c)-approximation for the problem, based on some lift-and-project SDP relaxation. Our main result is that a (1.5−c)(1.5 - c)-approximation can also be achieved using a natural and considerably simpler time-indexed LP relaxation for the problem. We hope this relaxation can provide new insights into the problem

    Creation of the selection list for the Experiment Scheduling Program (ESP)

    Get PDF
    The efforts to develop a procedure to construct selection groups to augment the Experiment Scheduling Program (ESP) are summarized. Included is a User's Guide and a sample scenario to guide in the use of the software system that implements the developed procedures

    Project scheduling under undertainty – survey and research potentials.

    Get PDF
    The vast majority of the research efforts in project scheduling assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. However, in the real world, project activities are subject to considerable uncertainty, that is gradually resolved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty: reactive scheduling, stochastic project scheduling, stochastic GERT network scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity analysis. We discuss the potentials of these approaches for scheduling projects under uncertainty.Management; Project management; Robustness; Scheduling; Stability;

    Solution and quality robust project scheduling: a methodological framework.

    Get PDF
    The vast majority of the research efforts in project scheduling over the past several years has concentrated on the development of exact and suboptimal procedures for the generation of a baseline schedule assuming complete information and a deterministic environment. During execution, however, projects may be the subject of considerable uncertainty, which may lead to numerous schedule disruptions. Predictive-reactive scheduling refers to the process where a baseline schedule is developed prior to the start of the project and updated if necessary during project execution. It is the objective of this paper to review possible procedures for the generation of proactive (robust) schedules, which are as well as possible protected against schedule disruptions, and for the deployment of reactive scheduling procedures that may be used to revise or re-optimize the baseline schedule when unexpected events occur. We also offer a methodological framework that should allow project management to identify the proper scheduling methodology for different project scheduling environments. Finally, we survey the basics of Critical Chain scheduling and indicate in which environments it is useful.Framework; Information; Management; Processes; Project management; Project scheduling; Project scheduling under uncertainty; Stability; Robust scheduling; Quality; Scheduling; Stability; Uncertainty;

    A methodology for integrated risk management and proactive scheduling of construction projects.

    Get PDF
    An integrated methodology is developed for planning construction projects under uncertainty. The methodology relies on a computer supported risk management system that allows to identify, analyze and quantify the major risk factors and derive the probability of their occurrence and their impact on the duration of the project activities. Using project management estimates of the marginal cost of activity starting time disruptions, a proactive baseline schedule is developed that is suffciently protected against the anticipated disruptions with acceptable project makespan performance. The methodology is illustrated on a real life application.Risk; Risk management; Management; Scheduling; Construction; Planning; Uncertainty; Factors; Probability; Impact; Project management; Cost; Time; Performance; Real life;

    Approximation Algorithms for Scheduling with Resource and Precedence Constraints

    Get PDF
    We study non-preemptive scheduling problems on identical parallel machines and uniformly related machines under both resource constraints and general precedence constraints between jobs. Our first result is an O(logn)-approximation algorithm for the objective of minimizing the makespan on parallel identical machines under resource and general precedence constraints. We then use this result as a subroutine to obtain an O(logn)-approximation algorithm for the more general objective of minimizing the total weighted completion time on parallel identical machines under both constraints. Finally, we present an O(logm logn)-approximation algorithm for scheduling under these constraints on uniformly related machines. We show that these results can all be generalized to include the case where each job has a release time. This is the first upper bound on the approximability of this class of scheduling problems where both resource and general precedence constraints must be satisfied simultaneously

    Proactive-reactive, robust scheduling and capacity planning of deconstruction projects under uncertainty

    Get PDF
    A project planning and decision support model is developed and applied to identify and reduce risk and uncertainty in deconstruction project planning. It allows calculating building inventories based on sensor information and construction standards and it computes robust project plans for different scenarios with multiple modes, constrained renewable resources and locations. A reactive and flexible planning element is proposed in the case of schedule infeasibility during project execution

    Variant-oriented Planning Models for Parts/Products Grouping, Sequencing and Operations

    Get PDF
    This research aims at developing novel methods for utilizing the commonality between part/product variants to make modern manufacturing systems more flexible, adaptable, and agile for dealing with less volume per variant and minimizing total changes in the setup between variants. Four models are developed for use in four important domains of manufacturing systems: production sequencing, product family formation, production flow, and products operations sequences retrieval. In all these domains, capitalizing on commonality between the part/product variants has a pivotal role. For production sequencing; a new policy based on setup similarity between product variants is proposed and its results are compared with a developed mathematical model in a permutation flow shop. The results show the proposed algorithm is capable of finding solutions in less than 0.02 seconds with an average error of 1.2%. For product family formation; a novel operation flow based similarity coefficient is developed for variants having networked structures and integrated with two other similarity coefficients, operation and volume similarity, to provide a more comprehensive similarity coefficient. Grouping variants based on the proposed integrated similarity coefficient improves changeover time and utilization of the system. A sequencing method, as a secondary application of this approach, is also developed. For production flow; a new mixed integer programing (MIP) model is developed to assign operations of a family of product variants to candidate machines and also to select the best place for each machine among the candidate locations. The final sequence of performing operations for each variant having networked structures is also determined. The objective is to minimize the total backtracking distance leading to an improvement in total throughput of the system (7.79% in the case study of three engine blocks). For operations sequences retrieval; two mathematical models and an algorithm are developed to construct a master operation sequence from the information of the existing variants belonging to a family of parts/products. This master operation sequence is used to develop the operation sequences for new variants which are sufficiently similar to existing variants. Using the proposed algorithm decreases time of developing the operations sequences of new variants to the seconds
    • …
    corecore