2,216 research outputs found

    Hybrid Iterative Multiuser Detection for Channel Coded Space Division Multiple Access OFDM Systems

    No full text
    Space division multiple access (SDMA) aided orthogonal frequency division multiplexing (OFDM) systems assisted by efficient multiuser detection (MUD) techniques have recently attracted intensive research interests. The maximum likelihood detection (MLD) arrangement was found to attain the best performance, although this was achieved at the cost of a computational complexity, which increases exponentially both with the number of users and with the number of bits per symbol transmitted by higher order modulation schemes. By contrast, the minimum mean-square error (MMSE) SDMA-MUD exhibits a lower complexity at the cost of a performance loss. Forward error correction (FEC) schemes such as, for example, turbo trellis coded modulation (TTCM), may be efficiently combined with SDMA-OFDM systems for the sake of improving the achievable performance. Genetic algorithm (GA) based multiuser detection techniques have been shown to provide a good performance in MUD-aided code division multiple access (CDMA) systems. In this contribution, a GA-aided MMSE MUD is proposed for employment in a TTCM assisted SDMA-OFDM system, which is capable of achieving a similar performance to that attained by its optimum MLD-aided counterpart at a significantly lower complexity, especially at high user loads. Moreover, when the proposed biased Q-function based mutation (BQM) assisted iterative GA (IGA) MUD is employed, the GA-aided system’s performance can be further improved, for example, by reducing the bit error ratio (BER) measured at 3 dB by about five orders of magnitude in comparison to the TTCM assisted MMSE-SDMA-OFDM benchmarker system, while still maintaining modest complexity

    Multiuser Detection Assisted Time- and Frequency-Domain Spread Multicarrier Code-Division Multiple-Access

    No full text
    In this contribution, we study a reduced-complexity multiuser detection aided multicarrier direct-sequence code-division multiple-access (MC DS-CDMA) scheme, which employs both time (T)-domain and frequency (F)-domain spreading. We investigate the achievable detection performance in the context of synchronous TF-domain spread MC DS-CDMA when communicating over an additive white Gaussian noise (AWGN) channel. Five detection schemes are investigated, which include the single-user correlation based detector, the joint TF-domain decorrelating multiuser detector (MUD), the joint TF-domain MMSEMUD, the separate TF-domain decorrelating/MMSE MUD, and the separate TF-domain MMSE/decorrelating MUD. Our simulation results show that the separate TF-domain MUD schemes are capable of achieving a similar bit error rate (BER) performance to that of the significantly more complex joint TF-domain MUD schemes. Index Terms—Code-division multiple-access (CDMA), decorrelating, frequency-domain spreading, joint detection, minimum mean square error (MMSE), multicarrier (MC), multiuser detection, separate detection, time-domain spreading

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    Rate-Splitting for Max-Min Fair Multigroup Multicast Beamforming in Overloaded Systems

    Get PDF
    In this paper, we consider the problem of achieving max-min fairness amongst multiple co-channel multicast groups through transmit beamforming. We explicitly focus on overloaded scenarios in which the number of transmitting antennas is insufficient to neutralize all inter-group interference. Such scenarios are becoming increasingly relevant in the light of growing low-latency content delivery demands, and also commonly appear in multibeam satellite systems. We derive performance limits of classical beamforming strategies using DoF analysis unveiling their limitations; for example, rates saturate in overloaded scenarios due to inter-group interference. To tackle interference, we propose a strategy based on degraded beamforming and successive interference cancellation. While the degraded strategy resolves the rate-saturation issue, this comes at a price of sacrificing all spatial multiplexing gains. This motivates the development of a unifying strategy that combines the benefits of the two previous strategies. We propose a beamforming strategy based on rate-splitting (RS) which divides the messages intended to each group into a degraded part and a designated part, and transmits a superposition of both degraded and designated beamformed streams. The superiority of the proposed strategy is demonstrated through DoF analysis. Finally, we solve the RS beamforming design problem and demonstrate significant performance gains through simulations

    Introducing Hierarchy in Energy Games

    Full text link
    In this work we introduce hierarchy in wireless networks that can be modeled by a decentralized multiple access channel and for which energy-efficiency is the main performance index. In these networks users are free to choose their power control strategy to selfishly maximize their energy-efficiency. Specifically, we introduce hierarchy in two different ways: 1. Assuming single-user decoding at the receiver, we investigate a Stackelberg formulation of the game where one user is the leader whereas the other users are assumed to be able to react to the leader's decisions; 2. Assuming neither leader nor followers among the users, we introduce hierarchy by assuming successive interference cancellation at the receiver. It is shown that introducing a certain degree of hierarchy in non-cooperative power control games not only improves the individual energy efficiency of all the users but can also be a way of insuring the existence of a non-saturated equilibrium and reaching a desired trade-off between the global network performance at the equilibrium and the requested amount of signaling. In this respect, the way of measuring the global performance of an energy-efficient network is shown to be a critical issue.Comment: Accepted for publication in IEEE Trans. on Wireless Communication

    Burst-by-Burst Adaptive Decision Feedback Equalised TCM, TTCM and BICM for H.263-Assisted Wireless Video Telephony

    No full text
    Decision Feedback Equaliser (DFE) aided wideband Burst-by-Burst (BbB) Adaptive Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM) and Bit-Interleaved Coded Modulation (BICM) assisted H.263-based video transceivers are proposed and characterised in performance terms when communicating over the COST 207 Typical Urban wideband fading channel. Specifically, four different modulation modes, namely 4QAM, 8PSK, 16QAM and 64QAM are invoked and protected by the above-mentioned coded modulation schemes. The TTCM assisted scheme was found to provide the best video performance, although at the cost of the highest complexity. A range of lower-complexity arrangements will also be characterised. Finally, in order to confirm these findings in an important practical environment, we have also investigated the adaptive TTCM scheme in the CDMA-based Universal Mobile Telecommunications System's (UMTS) Terrestrial Radio Access (UTRA) scenario and the good performance of adaptive TTCM scheme recorded when communicating over the COST 207 channels was retained in the UTRA environment
    corecore