2,472 research outputs found

    Group-level impacts of within- and between-subject hemodynamic variability in fMRI

    Get PDF
    International audienceInter-subject fMRI analyses have specific issues regarding the reliability of the results concerning both the detection of brain activation patterns and the estimation of the underlying dynamics. Among these issues lies the variability of the hemodynamic response function (HRF), that is usually accounted for using functional basis sets in the general linear model context. Here, we use the joint detection-estimation approach (JDE) (Makni et al., 2008; Vincent et al., 2010) which combines regional nonparametric HRF inference with spatially adaptive regularization of activation clusters to avoid global smoothing of fMRI images. We show that the JDE-based inference brings a significant improvement in statistical sensitivity for detecting evoked activity in parietal regions. In contrast, the canonical HRF associated with spatially adaptive regularization is more sensitive in other regions, such as motor cortex. This different regional behavior is shown to reflect a larger discrepancy of HRF with the canonical model. By varying parallel imaging acceleration factor, SNR-specific region-based hemodynamic parameters (activation delay and duration) were extracted from the JDE inference. Complementary analyses highlighted their significant departure from the canonical parameters and the strongest between-subject variability that occurs in the parietal region, irrespective of the SNR value. Finally, statistical evidence that the fluctuation of the HRF shape is responsible for the significant change in activation detection performance is demonstrated using paired t-tests between hemodynamic parameters inferred by GLM and JDE

    Hemodynamically informed parcellation of cerebral FMRI data

    Get PDF
    Standard detection of evoked brain activity in functional MRI (fMRI) relies on a fixed and known shape of the impulse response of the neurovascular coupling, namely the hemodynamic response function (HRF). To cope with this issue, the joint detection-estimation (JDE) framework has been proposed. This formalism enables to estimate a HRF per region but for doing so, it assumes a prior brain partition (or parcellation) regarding hemodynamic territories. This partition has to be accurate enough to recover accurate HRF shapes but has also to overcome the detection-estimation issue: the lack of hemodynamics information in the non-active positions. An hemodynamically-based parcellation method is proposed, consisting first of a feature extraction step, followed by a Gaussian Mixture-based parcellation, which considers the injection of the activation levels in the parcellation process, in order to overcome the detection-estimation issue and find the underlying hemodynamics

    Substantia nigra activity level predicts trial-to-trial adjustments in cognitive control

    Get PDF
    Effective adaptation to the demands of a changing environment requires flexible cognitive control. The medial and the lateral frontal cortices are involved in such control processes, putatively in close interplay with the BG. In particular, dopaminergic projections from the midbrain (i.e., from the substantia nigra [SN] and the ventral tegmental area) have been proposed to play a pivotal role in modulating the activity in these areas for cognitive control purposes. In that dopaminergic involvement has been strongly implicated in reinforcement learning, these ideas suggest functional links between reinforcement learning, where the outcome of actions shapes behavior over time, and cognitive control in a more general context, where no direct reward is involved. Here, we provide evidence from functional MRI in humans that activity in the SN predicts systematic subsequent trial-to-trial RT prolongations that are thought to reflect cognitive control in a stop-signal paradigm. In particular, variations in the activity level of the SN in one trial predicted the degree of RT prolongation on the subsequent trial, consistent with a modulating output signal from the SN being involved in enhancing cognitive control. This link between SN activity and subsequent behavioral adjustments lends support to theoretical accounts that propose dopaminergic control signals that shape behavior both in the presence and in the absence of direct reward. This SN-based modulatory mechanism is presumably mediated via a wider network that determines response speed in this task, including frontal and parietal control regions, along with the BG and the associated subthalamic nucleus

    Disambiguating the role of blood flow and global signal with partial information decomposition

    Get PDF
    Global signal (GS) is an ubiquitous construct in resting state functional magnetic resonance imaging (rs-fMRI), associated to nuisance, but containing by definition most of the neuronal signal. Global signal regression (GSR) effectively removes the impact of physiological noise and other artifacts, but at the same time it alters correlational patterns in unpredicted ways. Performing GSR taking into account the underlying physiology (mainly the blood arrival time) has been proven to be beneficial. From these observations we aimed to: 1) characterize the effect of GSR on network-level functional connectivity in a large dataset; 2) assess the complementary role of global signal and vessels; and 3) use the framework of partial information decomposition to further look into the joint dynamics of the global signal and vessels, and their respective influence on the dynamics of cortical areas. We observe that GSR affects intrinsic connectivity networks in the connectome in a non-uniform way. Furthermore, by estimating the predictive information of blood flow and the global signal using partial information decomposition, we observe that both signals are present in different amounts across intrinsic connectivity networks. Simulations showed that differences in blood arrival time can largely explain this phenomenon, while using hemodynamic and calcium mouse recordings we were able to confirm the presence of vascular effects, as calcium recordings lack hemodynamic information. With these results we confirm network-specific effects of GSR and the importance of taking blood flow into account for improving de-noising methods. Additionally, and beyond the mere issue of data denoising, we quantify the diverse and complementary effect of global and vessel BOLD signals on the dynamics of cortical areas

    Flexible multivariate hemodynamics fMRI data analyses and simulations with PyHRF

    Get PDF
    International audienceAs part of fMRI data analysis, the pyhrf package provides a set of tools for addressing the two 3 main issues involved in intra-subject fMRI data analysis: (i) the localization of cerebral regions 4 that elicit evoked activity and (ii) the estimation of the activation dynamics also referenced to 5 as the recovery of the Hemodynamic Response Function (HRF). To tackle these two problems, 6 pyhrf implements the Joint Detection-Estimation framework (JDE) which recovers parcel-level 7 HRFs and embeds an adaptive spatio-temporal regularization scheme of activation maps. With 8 respect to the sole detection issue (i), the classical voxelwise GLM procedure is also available 9 through nipy, whereas Finite Impulse Response (FIR) and temporally regularized FIR models 10 are implemented to deal with HRF estimation concerns (ii). Several parcellation tools are also 11 integrated such as spatial and functional clustering. Parcellations may be used for spatial 12 averaging prior to FIR/RFIR analysis or to specify the spatial support of the HRF estimates 13 in the JDE approach. These analysis procedures can be applied either to volumic data sets or 14 to data projected onto the cortical surface. For validation purpose, this package is shipped with 15 artificial and real fMRI data sets, which are used in this paper to compare the outcome of the 16 different available approaches. The artificial fMRI data generator is also described to illustrate 17 how to simulate different activation configurations, HRF shapes or nuisance components. To 18 cope with the high computational needs for inference, pyhrf handles distributing computing 19 by exploiting cluster units as well as multiple cores computers. Finally, a dedicated viewer is 20 presented, which handles n-dimensional images and provides suitable features to explore whole 21 brain hemodynamics (time series, maps, ROI mask overlay)

    Epigenetic modification of the oxytocin receptor gene is associated with emotion processing in the infant brain

    Get PDF
    The neural capacity to discriminate between emotions emerges early in development, though little is known about specific factors that contribute to variability in this vital skill during infancy. In adults, DNA methylation of the oxytocin receptor gene (OXTRm) is an epigenetic modification that is variable, predictive of gene expression, and has been linked to autism spectrum disorder and the neural response to social cues. It is unknown whether OXTRm is variable in infants, and whether it is predictive of early social function. Implementing a developmental neuroimaging epigenetics approach in a large sample of infants (N = 98), we examined whether OXTRm is associated with neural responses to emotional expressions. OXTRm was assessed at 5 months of age. At 7 months of age, infants viewed happy, angry, and fearful faces while functional near-infrared spectroscopy was recorded. We observed that OXTRm shows considerable variability among infants. Critically, infants with higher OXTRm show enhanced responses to anger and fear and attenuated responses to happiness in right inferior frontal cortex, a region implicated in emotion processing through action-perception coupling. Findings support models emphasizing oxytocin's role in modulating neural response to emotion and identify OXTRm as an epigenetic mark contributing to early brain function
    corecore