260 research outputs found

    Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial

    Get PDF
    Multirate digital filters and filter banks find application in communications, speech processing, image compression, antenna systems, analog voice privacy systems, and in the digital audio industry. During the last several years there has been substantial progress in multirate system research. This includes design of decimation and interpolation filters, analysis/synthesis filter banks (also called quadrature mirror filters, or QMFJ, and the development of new sampling theorems. First, the basic concepts and building blocks in multirate digital signal processing (DSPJ, including the digital polyphase representation, are reviewed. Next, recent progress as reported by several authors in this area is discussed. Several applications are described, including the following: subband coding of waveforms, voice privacy systems, integral and fractional sampling rate conversion (such as in digital audio), digital crossover networks, and multirate coding of narrow-band filter coefficients. The M-band QMF bank is discussed in considerable detail, including an analysis of various errors and imperfections. Recent techniques for perfect signal reconstruction in such systems are reviewed. The connection between QMF banks and other related topics, such as block digital filtering and periodically time-varying systems, based on a pseudo-circulant matrix framework, is covered. Unconventional applications of the polyphase concept are discussed

    Orthonormal and biorthonormal filter banks as convolvers, and convolutional coding gain

    Get PDF
    Convolution theorems for filter bank transformers are introduced. Both uniform and nonuniform decimation ratios are considered, and orthonormal as well as biorthonormal cases are addressed. All the theorems are such that the original convolution reduces to a sum of shorter, decoupled convolutions in the subbands. That is, there is no need to have cross convolution between subbands. For the orthonormal case, expressions for optimal bit allocation and the optimized coding gain are derived. The contribution to coding gain comes partly from the nonuniformity of the signal spectrum and partly from nonuniformity of the filter spectrum. With one of the convolved sequences taken to be the unit pulse function,,e coding gain expressions reduce to those for traditional subband and transform coding. The filter-bank convolver has about the same computational complexity as a traditional convolver, if the analysis bank has small complexity compared to the convolution itself

    FPGA based Uniform Channelizer Implementation

    Get PDF
    Channelizers are widely used in modern digital communication systems. Advanced uniform multirate channelization have been theoretically proved to be capable of reducing the computational load, with a better performance. Therefore, in this thesis, we implement these designs on a FPGA board for the sake of the comprehensive evaluation of resource usage, performance and frequency response. The uniform filter-banks are one of the most essential unit in channelization. The Generalised Discrete Fourier Transform Modulated Filter Bank (GDFT-FB), as an important variant of basic a DFT-FB, has been implemented in FPGA and demonstrated with a better computational saving rather than traditional schemes. Moreover the oversampling version is demonstrated to have a better frequency response with an acceptable amount of extra resources. On the other hand, frequency response masking (FRM) techniques is able to reduce the number of coefficients. Therefore, the full FRM GDFT-FB and alternative narrowband FRM GDFT-FB are both implemented in FPGA platform, in order to achieve a better performance and hardware efficiency
    corecore