491 research outputs found

    Fluorescence polarization control for on-off switching of single molecules at cryogenic temperatures [preprint]

    Get PDF
    Light microscopy allowing sub-diffraction limited resolution has been among the fastest developing techniques at the interface of biology, chemistry and physics. Intriguingly no theoretical limit exists on how far the underlying measurement uncertainty can be lowered. In particular data fusion of large amounts of images can reduce the measurement error to match the resolution of structural methods like cryo-electron microscopy. Fluorescence, although reliant on a reporter molecule and therefore not the first choice to obtain ultra resolution structures, brings highly specific labeling of molecules in a large assemble to the table and inherently allows the detection of multiple colors, which enable the interrogation of multiple molecular species at the same time in the same sample. Here we discuss the problems to be solved in the coming years to aim for higher resolution and describe what polarization depletion of fluorescence at cryogenic temperatures can contribute for fluorescence imaging of biological samples like whole cells

    xQSM: Quantitative Susceptibility Mapping with Octave Convolutional and Noise Regularized Neural Networks

    Full text link
    Quantitative susceptibility mapping (QSM) is a valuable magnetic resonance imaging (MRI) contrast mechanism that has demonstrated broad clinical applications. However, the image reconstruction of QSM is challenging due to its ill-posed dipole inversion process. In this study, a new deep learning method for QSM reconstruction, namely xQSM, was designed by introducing modified state-of-the-art octave convolutional layers into the U-net backbone. The xQSM method was compared with recentlyproposed U-net-based and conventional regularizationbased methods, using peak signal to noise ratio (PSNR), structural similarity (SSIM), and region-of-interest measurements. The results from a numerical phantom, a simulated human brain, four in vivo healthy human subjects, a multiple sclerosis patient, a glioblastoma patient, as well as a healthy mouse brain showed that the xQSM led to suppressed artifacts than the conventional methods, and enhanced susceptibility contrast, particularly in the ironrich deep grey matter region, than the original U-net, consistently. The xQSM method also substantially shortened the reconstruction time from minutes using conventional iterative methods to only a few seconds.Comment: 37 pages, 10 figures, 3 tabl

    Convex Relaxations for Particle-Gradient Flow with Applications in Super-Resolution Single-Molecule Localization Microscopy

    Get PDF
    Single-molecule localization microscopy (SMLM) techniques have become advanced bioanalytical tools by quantifying the positions and orientations of molecules in space and time at the nanoscale. With the noisy and heterogeneous nature of SMLM datasets in mind, we discuss leveraging particle-gradient flow 1) for quantifying the accuracy of localization algorithms with and without ground truth and 2) as a basis for novel, model-driven localization algorithms with empirically robust performance. Using experimental data, we demonstrate that overlapping images of molecules, a typical consequence of densely packed biological structures, cause biases in position estimates and reconstruction artifacts. To minimize such biases, we develop a novel sparse deconvolution algorithm by relaxing a particle-gradient flow algorithm (called relaxed-gradient flow or RGF). In contrast to previous methods based on sequential source matching or grid-based strategies, RGF detects source molecules based on the estimated “gradient flux.” RGF reconstructs experimental images of microtubules with much greater accuracy in terms of separation and diameter. We further extend RGF to the problem of joint estimation of molecular position and orientation. By lifting the optimization from first-order to second-order orientational moments, we derive an efficient version of RGF, which exhibits robustness to instrumental mismatches. Finally, we discuss the fundamental problem of quantifying the accuracy of a localization estimate without ground truth. We show that by computing measurement stability under a well-chosen perturbation with accurate knowledge of the imaging system, we can robustly quantify the confidence of individual localizations without ground-truth knowledge of the sample. To demonstrate the broad applicability of our method, termed Wasserstein-induced flux, we measure the accuracy of various reconstruction algorithms directly on experimental data

    Modeling and model-aware signal processing methods for enhancement of optical systems

    Full text link
    Theoretical and numerical modeling of optical systems are increasingly being utilized in a wide range of areas in physics and engineering for characterizing and improving existing systems or developing new methods. This dissertation focuses on determining and improving the performance of imaging and non-imaging optical systems through modeling and developing model-aware enhancement methods. We evaluate the performance, demonstrate enhancements in terms of resolution and light collection efficiency, and improve the capabilities of the systems through changes to the system design and through post-processing techniques. We consider application areas in integrated circuit (IC) imaging for fault analysis and malicious circuitry detection, and free-form lens design for creating prescribed illumination patterns. The first part of this dissertation focuses on sub-surface imaging of ICs for fault analysis using a solid immersion lens (SIL) microscope. We first derive the Green's function of the microscope and use it to determine its resolution limits for bulk silicon and silicon-on-insulator (SOI) chips. We then propose an optimization framework for designing super-resolving apodization masks that utilizes the developed model and demonstrate the trade-offs in designing such masks. Finally, we derive the full electromagnetic model of the SIL microscope that models the image of an arbitrary sub-surface structure. With the rapidly shrinking dimensions of ICs, we are increasingly limited in resolving the features and identifying potential modifications despite the resolution improvements provided by the state-of-the-art microscopy techniques and enhancement methods described here. In the second part of this dissertation, we shift our focus away from improving the resolution and consider an optical framework that does not require high resolution imaging for detecting malicious circuitry. We develop a classification-based high-throughput gate identification method that utilizes the physical model of the optical system. We then propose a lower-throughput system to increase the detection accuracy, based on higher resolution imaging to supplement the former method. Finally, we consider the problem of free-form lens design for forming prescribed illumination patterns as a non-imaging application. Common methods that design free-form lenses for forming patterns consider the input light source to be a point source, however using extended light sources with such lenses lead to significant blurring in the resulting pattern. We propose a deconvolution-based framework that utilizes the lens geometry to model the blurring effects and eliminates this degradation, resulting in sharper patterns

    Modeling and model-aware signal processing methods for enhancement of optical systems

    Full text link
    Theoretical and numerical modeling of optical systems are increasingly being utilized in a wide range of areas in physics and engineering for characterizing and improving existing systems or developing new methods. This dissertation focuses on determining and improving the performance of imaging and non-imaging optical systems through modeling and developing model-aware enhancement methods. We evaluate the performance, demonstrate enhancements in terms of resolution and light collection efficiency, and improve the capabilities of the systems through changes to the system design and through post-processing techniques. We consider application areas in integrated circuit (IC) imaging for fault analysis and malicious circuitry detection, and free-form lens design for creating prescribed illumination patterns. The first part of this dissertation focuses on sub-surface imaging of ICs for fault analysis using a solid immersion lens (SIL) microscope. We first derive the Green's function of the microscope and use it to determine its resolution limits for bulk silicon and silicon-on-insulator (SOI) chips. We then propose an optimization framework for designing super-resolving apodization masks that utilizes the developed model and demonstrate the trade-offs in designing such masks. Finally, we derive the full electromagnetic model of the SIL microscope that models the image of an arbitrary sub-surface structure. With the rapidly shrinking dimensions of ICs, we are increasingly limited in resolving the features and identifying potential modifications despite the resolution improvements provided by the state-of-the-art microscopy techniques and enhancement methods described here. In the second part of this dissertation, we shift our focus away from improving the resolution and consider an optical framework that does not require high resolution imaging for detecting malicious circuitry. We develop a classification-based high-throughput gate identification method that utilizes the physical model of the optical system. We then propose a lower-throughput system to increase the detection accuracy, based on higher resolution imaging to supplement the former method. Finally, we consider the problem of free-form lens design for forming prescribed illumination patterns as a non-imaging application. Common methods that design free-form lenses for forming patterns consider the input light source to be a point source, however using extended light sources with such lenses lead to significant blurring in the resulting pattern. We propose a deconvolution-based framework that utilizes the lens geometry to model the blurring effects and eliminates this degradation, resulting in sharper patterns

    Structural Organization and Chemical Activity Revealed by New Developments in Single-Molecule Fluorescence and Orientation Imaging

    Get PDF
    Single-molecule (SM) fluorescence and its localization are important and versatile tools for understanding and quantifying dynamical nanoscale behavior of nanoparticles and biological systems. By actively controlling the concentration of fluorescent molecules and precisely localizing individual single molecules, it is possible to overcome the classical diffraction limit and achieve \u27super-resolution\u27 with image resolution on the order of 10 nanometers. Single molecules also can be considered as nanoscale sensors since their fluorescence changes in response to their local nanoenvironment. This dissertation discusses extending this SM approach to resolve heterogeneity and dynamics of nanoscale materials and biophysical structures by using positions and orientations of single fluorescent molecules. I first present an SM approach for resolving spatial variations in the catalytic activity of individual photocatalysts. Quantitative colocalization of chemically triggered molecular probes reveals the role of structural defects on the activity of catalytic nanoparticles. Next, I demonstrate a new engineered optical point spread function (PSF), called the Duo-spot PSF, for SM orientation measurements. This PSF exhibits high sensitivity for estimating orientations of dim fluorescent molecules. This dissertation also discusses a new amyloid imaging method, transient amyloid binding (TAB) microscopy, for studying heterogeneous organization of amyloid structures, which are associated with various aging-related neurodegenerative diseases. Continuous transient binding of dye molecules to amyloid structures generates photon bursts for SM localization over hours to days with minimal photobleaching, yielding about 40% more localizations than standard immunolabeling. Finally, I augment TAB imaging to simultaneously measure positions and orientations of fluorescent molecules bound to amyloid surfaces. This new method, termed single-molecule orientation localization microscopy (SMOLM), robustly and sensitively measures the in-plane (xy) orientations of fluorophores (approximately 9 degree precision in azimuthal angle) near a refractive index interface and reveals structural heterogeneities along amyloid fibrillar networks that cannot be resolved by SM localization alone

    Visualization and Localization of Interventional Devices with MRI by Susceptibility Mapping

    Get PDF
    Recently, interventional procedures can be performed with the visual assistance of MRI. However, the devices used in these procedures, such as brachytherapy seeds, biopsy needles, markers, and stents, have a large magnetic susceptibility that leads to severe signal loss and distortion in the MRI images and degrades the accuracy of the localization. Right now, there is no effective way to correctly identify, localize and visualize these interventional devices in MRI images. In this dissertation, we proposed a method to improve the accuracy of localization and visualization by generating positive contrast of the interventional devices using a regularized L1 minimization algorithm. Specifically, the spin-echo sequence with a shifted 180-degree pulse is used to acquire high SNR data. A short shift time is used to avoid severe phase wrap. A phase unwrapping method based on Markov Random Field using Highest-Confidence-First algorithm is proposed to unwrap the phase image. Then the phase images with different shifted time are used to calculate the field map. Next, L1 regularized deconvolution is performed to calculate the susceptibility map. With much higher susceptibility of the interventional devices than the background tissue, the interventional devices show positive-contrast in the susceptibility image. Computer simulations were performed to study the effect of the signal-to-noise ratio, resolution, orientation and size of the interventional devices on the accuracy of the results. Experiments were performed using gelatin and tissue phantom with brachytherapy seeds, gelatin phantoms with platinum wires, and water phantom with titanium needles. The results show that the proposed method provide positive contrast images of these interventional devices, differentiate them from other structures in the MRI images, and improves the visualization and localization of the devices

    Holographic MIMO Communications: Theoretical Foundations, Enabling Technologies, and Future Directions

    Full text link
    Future wireless systems are envisioned to create an endogenously holography-capable, intelligent, and programmable radio propagation environment, that will offer unprecedented capabilities for high spectral and energy efficiency, low latency, and massive connectivity. A potential and promising technology for supporting the expected extreme requirements of the sixth-generation (6G) communication systems is the concept of the holographic multiple-input multiple-output (HMIMO), which will actualize holographic radios with reasonable power consumption and fabrication cost. The HMIMO is facilitated by ultra-thin, extremely large, and nearly continuous surfaces that incorporate reconfigurable and sub-wavelength-spaced antennas and/or metamaterials. Such surfaces comprising dense electromagnetic (EM) excited elements are capable of recording and manipulating impinging fields with utmost flexibility and precision, as well as with reduced cost and power consumption, thereby shaping arbitrary-intended EM waves with high energy efficiency. The powerful EM processing capability of HMIMO opens up the possibility of wireless communications of holographic imaging level, paving the way for signal processing techniques realized in the EM-domain, possibly in conjunction with their digital-domain counterparts. However, in spite of the significant potential, the studies on HMIMO communications are still at an initial stage, its fundamental limits remain to be unveiled, and a certain number of critical technical challenges need to be addressed. In this survey, we present a comprehensive overview of the latest advances in the HMIMO communications paradigm, with a special focus on their physical aspects, their theoretical foundations, as well as the enabling technologies for HMIMO systems. We also compare the HMIMO with existing multi-antenna technologies, especially the massive MIMO, present various...Comment: double column, 58 page
    • …
    corecore