1,983 research outputs found

    A Thesis: A CRYPTOGRAPHIC STUDY OF SOME DIGITAL SIGNATURE SCHEMES.

    Get PDF
    In this thesis, we propose some directed signature schemes. In addition, we have discussed their applications in different situations. In this thesis, we would like to discuss the security aspects during the design process of the proposed directed digital signature schemes. The security of the most digital signature schemes widely use in practice is based on the two difficult problems, viz; the problem of factoring integers (The RSA scheme) and the problem of finding discrete logarithms over finite fields (The ElGamal scheme). The proposed works in this thesis is divided into seven chapters

    A randomized analog of Chaum — van Antwerpen undeniable signature

    Get PDF
    Предлагается модификация неоспоримой подписи Д. Чаума и Х. ван Антверпена, основанная на группе точек эллиптической кривой. Алгоритм формирования подписи дополнен предварительным этапом рандомизации. Для протоколов проверки подписи и отказа от неё предложено два варианта выполнения. Доказаны теоремы, показывающие, что эти протоколы отвечают своему назначению. Описан способ преобразования неоспоримой подписи в обычную цифровую подпись, проиллюстрированный на примере схемы цифровой подписи Шнорра

    Distributed Provers and Verifiable Secret Sharing Based on the Discrete Logarithm Problem

    Get PDF
    Secret sharing allows a secret key to be distributed among n persons, such that k(1 <= k <= n) of these must be present in order to recover it at a later time. This report first shows how this can be done such that every person can verify (by himself) that his part of the secret is correct even though fewer than k persons get no Shannon information about the secret. However, this high level of security is not needed in public key schemes, where the secret key is uniquely determined by a corresponding public key. It is therefore shown how such a secret key (which can be used to sign messages or decipher cipher texts) can be distributed. This scheme has the property, that even though everybody can verify his own part, sets of fewer than k persons cannot sign/decipher unless they could have done so given just the public key. This scheme has the additional property that more than k persons can use the key without compromising their parts of it. Hence, the key can be reused. This technique is further developed to be applied to undeniable signatures. These signatures differ from traditional signatures as they can only be verified with the signer's assistance. The report shows how the signer can authorize agents who can help verifying signatures, but they cannot sign (unless the signer permits it)

    Design and Analysis of Opaque Signatures

    Get PDF
    Digital signatures were introduced to guarantee the authenticity and integrity of the underlying messages. A digital signature scheme comprises the key generation, the signature, and the verification algorithms. The key generation algorithm creates the signing and the verifying keys, called also the signer’s private and public keys respectively. The signature algorithm, which is run by the signer, produces a signature on the input message. Finally, the verification algorithm, run by anyone who knows the signer’s public key, checks whether a purported signature on some message is valid or not. The last property, namely the universal verification of digital signatures is undesirable in situations where the signed data is commercially or personally sensitive. Therefore, mechanisms which share most properties with digital signatures except for the universal verification were invented to respond to the aforementioned need; we call such mechanisms “opaque signatures”. In this thesis, we study the signatures where the verification cannot be achieved without the cooperation of a specific entity, namely the signer in case of undeniable signatures, or the confirmer in case of confirmer signatures; we make three main contributions. We first study the relationship between two security properties important for public key encryption, namely data privacy and key privacy. Our study is motivated by the fact that opaque signatures involve always an encryption layer that ensures their opacity. The properties required for this encryption vary according to whether we want to protect the identity (i.e. the key) of the signer or hide the validity of the signature. Therefore, it would be convenient to use existing work about the encryption scheme in order to derive one notion from the other. Next, we delve into the generic constructions of confirmer signatures from basic cryptographic primitives, e.g. digital signatures, encryption, or commitment schemes. In fact, generic constructions give easy-to-understand and easy-to-prove schemes, however, this convenience is often achieved at the expense of efficiency. In this contribution, which constitutes the core of this thesis, we first analyze the already existing constructions; our study concludes that the popular generic constructions of confirmer signatures necessitate strong security assumptions on the building blocks, which impacts negatively the efficiency of the resulting signatures. Next, we show that a small change in these constructionsmakes these assumptions drop drastically, allowing as a result constructions with instantiations that compete with the dedicated realizations of these signatures. Finally, we revisit two early undeniable signatures which were proposed with a conjectural security. We disprove the claimed security of the first scheme, and we provide a fix to it in order to achieve strong security properties. Next, we upgrade the second scheme so that it supports a iii desirable feature, and we provide a formal security treatment of the new scheme: we prove that it is secure assuming new reasonable assumptions on the underlying constituents

    Authentication and key establishment in wireless networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Identity and Privacy Governance

    Get PDF

    Draft of welfare reform in Slovakia

    Get PDF

    Identity and Privacy Governance

    Get PDF
    corecore