6,334 research outputs found

    From eye to machine: shifting authority in color measurement

    Get PDF
    Given a subject so imbued with contention and conflicting theoretical stances, it is remarkable that automated instruments ever came to replace the human eye as sensitive arbiters of color specification. Yet, dramatic shifts in assumptions and practice did occur in the first half of the twentieth century. How and why was confidence transferred from careful observers to mechanized devices when the property being measured – color – had become so closely identified with human physiology and psychology? A fertile perspective on the problem is via the history of science and technology, paying particular attention to social groups and disciplinary identity to determine how those factors affected their communities’ cognitive territory. There were both common and discordant threads motivating the various technical groups that took on the problems of measuring light and color from the late nineteenth century onwards, and leading them towards the development of appropriate instruments for themselves. The transition from visual to photoelectric methods <i>could</i> be portrayed as a natural evolution, replacing the eye by an alternative roviding more sensitivity and convenience – indeed, this is the conventional positivist view propounded by technical histories. However, the adoption of new measurement technologies seldom is simple, and frequently has a significant cultural component. Beneath this slide towards automation lay a raft of implicit assumptions about objectivity, the nature of the observer, the role of instruments, and the trade-offs between standardization and descriptive power. While espousing rational arguments for a physical detector of color, its proponents weighted their views with tacit considerations. The reassignment of trust from the eye to automated instruments was influenced as much by the historical context as by intellectual factors. I will argue that several distinct aspects were involved, which include the reductive view of color provided by the trichromatic theory; the impetus provided by its association with photometry; the expanding mood for a quantitative and objective approach to scientific observation; and, the pressures for commercial standardization. As suggested by these factors, there was another shift of authority at play: from one technical specialism to another. The regularization of color involved appropriation of the subject by a particular set of social interests: communities of physicists and engineers espousing a ‘physicalist’ interpretation, rather than psychologists and physiologists for whom color was conceived as a more complex phenomenon. Moreover, the sources for automated color measurement, and instrumentation for measuring color, were primarily from the industrial sphere rather than from academic science. To understand these shifts, then, this chapter explores differing views of the importance of observers, machines and automation

    Investigations using data in Alabama from ERTS-A

    Get PDF
    There are no author-identified significant results in this report

    The use of lasers for hydrographic studies

    Get PDF
    The utilization of remote laser sensors in water pollution detection and identification, coastal environmental monitoring, and bathymetric depth sounding, is discussed. q

    Optimising Light Source Spectrum to Reduce the Energy Absorbed by Objects

    Get PDF
    Light is used to illuminate objects in the built environment. Humans can only observe light reflected from an object. Light absorbed by an object turns into heat and does not contribute to visibility. Since the spectral output of the new lighting technologies can be tuned, it is possible to imagine a lighting system that detects the colours of objects and emits customised light to minimise the absorbed energy. Previous optimisation studies investigated the use of narrowband LEDs to maximise the efficiency and colour quality of a light source. While these studies aimed to tune a white light source for general use, the lighting system proposed here minimises the energy consumed by lighting by detecting colours of objects and emitting customised light onto each coloured part of the object. This thesis investigates the feasibility of absorption-minimising light source spectra and their impact on the colour appearance of objects and energy consumption. Two computational studies were undertaken to form the theoretical basis of the absorption-minimising light source spectra. Computational simulations show that the theoretical single-peak spectra can lower the energy consumption up to around 38 % to 62 %, and double-peak test spectra can result in energy savings up to 71 %, without causing colour shifts. In these studies, standard reference illuminants, theoretical test spectra and coloured test samples were used. These studies are followed by the empirical evidence collected from two psychophysical experiments. Data from the experiments show that observers find the colour appearance of objects equally natural and attractive under spectrally optimised spectra and reference white light sources. An increased colour difference, to a certain extent, is found acceptable, which allows even higher energy savings. However, the translucent nature of some objects may negatively affect the results

    An evaluation of the environmental fate of reactive dyes

    Get PDF
    Merged with duplicate record 10026.1/697 on 01.02.2017 by CS (TIS)Dyestuffs are widely used industrial chemicals, yet surprisingly little is known about their fate in the environment. The potential modes of transformation and removal of reactive dyes in treatment and in the environment are principally through anaerobic and aerobic biodegradation and photodegradation. The research herein describes the use of LC-MS analysis with laboratory simulations to develop a better understanding of the occurrence and fate of reactive dyes and their degradation products in the aquatic environment. One reason for the lack of information on the environmental fate of reactive dyes has been the paucity of robust analytical methods suitable for the determination of dyes in aqueous samples. Robust analytical methods were optimised to provide LC-MS and MSMS identification of degradation products. Additionally, interpretation of the MSMS spectra of known reactive dyes provided novel characteristic fragment ions indicative of the triazine reactive group of reactive dyes . Fibre reactive dyes are designed to have a degree of photostability and therefore their photodegradation behaviour has not been widely investigated. Little is known of their stability to daylight over prolonged periods of irradiation in dilute aqueous solutions and in the presence of humic substances. The kinetics of photodegradation of an anthraquinone dye (Reactive Blue H4R) and azo dye (Reactive Yellow P5G) were evaluated. The former underwent rapid and extensive degradation 01/2 1.5 h). The major products formed were identified using LC-MSMS and a photodegradation pathway proposed. By comparison, the photodegradation of the azo dye was significantly slower, 01/2 30 h). The addition of humic substancesa ppearedt o have little effect on the rate of photodegradationu nder the conditions used. The reduction of azo dyes under anaerobic treatment has been extensively studied, but the subsequent fate of the initial reduction products when exposed to air are not understood. Three relatively simple azo dyes, Amaranth, Sunset Yellow and Naphthol Blue-Black, were reduced and their autoxidation products identified by LC-MS. These were subsequently used to predict the autoxidation products of a more complex azo reactive dye: Reactive Red 3.1. Additionally, a persistent degradation product from the anaerobicaerobic treatment of Reactive Red 3.1 was identified from LC-MS data. Azo reactive dyes are generally regarded as being resistant to aerobic degradation and there are few published data regarding degradation pathways for reactive anthraquinone dyes. Pure cultures of Pseudomonas docunhae, A 9046 and A texaco and mixed bacterial consortia (semi-continuous activated sludge, SCAS) aerobic degradation of azo and anthraquinone reactive dyes was studied. Two azo dyes were degraded by pure cultures of A docunhae and A 9046, suggesting that azo dyes can be aerobically degraded given favourable conditions. The antraquinone dye was extensively degraded by SCAS and pure culture biodegradation. Metabolites were identified by LC-MS and a degradation pathway proposed.AstraZeneca Brixharn Environmental Laboratory Freshwater Quarry Brixharn, Devo

    Color Point Tuning for (Sr,Ca,Ba) Si2O2N2:Eu2+ for White Light LEDs

    Get PDF
    Color point tuning is an important challenge for improving white light LEDs. In this paper, the possibilities of color tuning with the efficient LED phosphor Sr1−x−y−zCaxBaySi2O2N2:Euz2+ (0 ≤ x, y ≤ 1; 0.005 ≤ z ≤ 0.16) are investigated. The emission color can be tuned in two ways: by changing Eu2+ concentration and by substitution of the host lattice cation Sr2+ by either Ca2+ or Ba2+. The variation in the Eu2+ concentration shows a red shift of the emission upon increasing the Eu concentration above 2%. The red shift is explained by energy migration and energy transfer to Eu2+ ions emitting at longer wavelengths. Along with this (desired) red shift there is an (undesired) lowering of the quantum efficiency and the thermal quenching temperature due to concentration quenching. Partial substitution of Sr2+ by either Ca2+ or Ba2+ also results in a red-shifted Eu2+ emission. For Ca2+ this is expected and the red shift is explained by an increased crystal field splitting for Eu2+ on the (smaller) Ca2+ cation site. For Ba2+, the red shift is surprising. Often, a blue shift of the fd emission is observed in case of substitution of Sr2+ by the larger Ba2+ cation. The Eu2+ emission in the pure BaSi2O2N2 host lattice is indeed blue-shifted. Temperature dependent luminescence measurements show that the quenching temperature drops upon substitution of Sr by Ca, whereas for Ba substitution, the quenching temperature remains high. Color tuning by partial substitution of Sr2+ by Ba2+ is therefore the most promising way to shift the color point of LEDs while retaining the high quantum yield and high luminescence quenching temperature

    Luminescence stimulated from quartz by green light: developments relevant to dating

    Get PDF
    • …
    corecore