10 research outputs found

    Fuzzy Stochastic Differential Equations Driven by Semimartingales-Different Approaches

    Get PDF
    The first aim of the paper is to present a survey of possible approaches for the study of fuzzy stochastic differential or integral equations. They are stochastic counterparts of classical approaches known from the theory of deterministic fuzzy differential equations. For our aims we present first a notion of fuzzy stochastic integral with a semimartingale integrator and its main properties. Next we focus on different approaches for fuzzy stochastic differential equations. We present the existence of fuzzy solutions to such equations as well as their main properties. In the first approach we treat the fuzzy equation as an abstract relation in the metric space of fuzzy sets over the space of square integrable random vectors. In the second one the equation is interpreted as a system of stochastic inclusions. Finally, in the last section we discuss fuzzy stochastic integral equations with solutions being fuzzy stochastic processes. In this case the notion of the stochastic Itî’s integral in the equation is crisp; that is, it has single-valued level sets. The second aim of this paper is to show that there is no extension to more general diffusion terms

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'

    A vision-based optical character recognition system for real-time identification of tractors in a port container terminal

    Get PDF
    Automation has been seen as a promising solution to increase the productivity of modern sea port container terminals. The potential of increase in throughput, work efficiency and reduction of labor cost have lured stick holders to strive for the introduction of automation in the overall terminal operation. A specific container handling process that is readily amenable to automation is the deployment and control of gantry cranes in the container yard of a container terminal where typical operations of truck identification, loading and unloading containers, and job management are primarily performed manually in a typical terminal. To facilitate the overall automation of the gantry crane operation, we devised an approach for the real-time identification of tractors through the recognition of the corresponding number plates that are located on top of the tractor cabin. With this crucial piece of information, remote or automated yard operations can then be performed. A machine vision-based system is introduced whereby these number plates are read and identified in real-time while the tractors are operating in the terminal. In this paper, we present the design and implementation of the system and highlight the major difficulties encountered including the recognition of character information printed on the number plates due to poor image integrity. Working solutions are proposed to address these problems which are incorporated in the overall identification system.postprin

    Job shop scheduling with artificial immune systems

    Get PDF
    The job shop scheduling is complex due to the dynamic environment. When the information of the jobs and machines are pre-defined and no unexpected events occur, the job shop is static. However, the real scheduling environment is always dynamic due to the constantly changing information and different uncertainties. This study discusses this complex job shop scheduling environment, and applies the AIS theory and switching strategy that changes the sequencing approach to the dispatching approach by taking into account the system status to solve this problem. AIS is a biological inspired computational paradigm that simulates the mechanisms of the biological immune system. Therefore, AIS presents appealing features of immune system that make AIS unique from other evolutionary intelligent algorithm, such as self-learning, long-lasting memory, cross reactive response, discrimination of self from non-self, fault tolerance, and strong adaptability to the environment. These features of AIS are successfully used in this study to solve the job shop scheduling problem. When the job shop environment is static, sequencing approach based on the clonal selection theory and immune network theory of AIS is applied. This approach achieves great performance, especially for small size problems in terms of computation time. The feature of long-lasting memory is demonstrated to be able to accelerate the convergence rate of the algorithm and reduce the computation time. When some unexpected events occasionally arrive at the job shop and disrupt the static environment, an extended deterministic dendritic cell algorithm (DCA) based on the DCA theory of AIS is proposed to arrange the rescheduling process to balance the efficiency and stability of the system. When the disturbances continuously occur, such as the continuous jobs arrival, the sequencing approach is changed to the dispatching approach that involves the priority dispatching rules (PDRs). The immune network theory of AIS is applied to propose an idiotypic network model of PDRs to arrange the application of various dispatching rules. The experiments show that the proposed network model presents strong adaptability to the dynamic job shop scheduling environment.postprin
    corecore