45 research outputs found

    Privacy-preserving PKI design based on group signature

    Get PDF
    Nowadays, Internet becomes a part of our life. We can make use of numerous services with personal computer, Lap-top, tablet, smart phone or smart TV. These devices with network make us enjoy ubiquitous computing life. Sometimes, on-line services request us authentication or identification for access control and authorization, and PKI technology is widely used because of its security. However the possibility of privacy invasion will increase, if We’re identified with same certificate in many services and these identification data are accumulated. For privacy-preserving authentication or anonymous authentication, there have been many researches such as Group signatures, anonymous credentials, etc. Among these researches, group signatures are very practical Because they provide unlinkability and traceability as well as anonymity. In this paper, we propose a privacy-preserving PKI based on group signature, with which users’ privacy can be Kept in services. Because of traceability, their identities can be traced if they abuse anonymity such as cybercrime. Moreover, we will also discuss open issues for further studies

    Adding Controllable Linkability to Pairing-Based Group Signatures For Free

    Get PDF
    Group signatures, which allow users of a group to anonymously produce signatures on behalf of the group, are an important cryptographic primitive for privacy-enhancing applications. Over the years, various approaches to enhanced anonymity management mechanisms, which extend the standard feature of opening of group signatures, have been proposed. In this paper we show how pairing-based group signature schemes (PB-GSSs) following the sign-and-encrypt-and-prove (SEP) paradigm that are secure in the BSZ model can be generically transformed in order to support one particular enhanced anonymity management mechanism, i.e., we propose a transformation that turns every such PB-GSS into a PB-GSS with controllable linkability. Basically, this transformation replaces the public key encryption scheme used for identity escrow within a group signature scheme with a modified all-or-nothing public key encryption with equality tests scheme (denoted AoN-PKEET^*) instantiated from the respective public key encryption scheme. Thereby, the respective trapdoor is given to the linking authority as a linking key. The appealing benefit of this approach in contrast to other anonymity management mechanisms (such as those provided by traceable signatures) is that controllable linkability can be added to PB-GSSs based on the SEP paradigm for free, i.e., it neither influences the signature size nor the computational costs for signers and verifiers in comparison to the scheme without this feature

    Linking-Based Revocation for Group Signatures: A Pragmatic Approach for Efficient Revocation Checks

    Get PDF
    Group signature schemes (GSS) represent an important privacy-enhancing technology. However, their practical applicability is restricted due to inefficiencies of existing membership revocation mechanisms that often place a too large computational burden and communication overhead on the involved parties. Moreover, it seems that the general belief (or unwritten law) of avoiding online authorities by all means artificially and unnecessarily restricts the efficiency and practicality of revocation mechanisms in GSSs. While a mindset of preventing online authorities might have been appropriate more than 10 years ago, today the availability of highly reliable cloud computing infrastructures could be used to solve open challenges. More specifically, in order to overcome the inefficiencies of existing revocation mechanisms, we propose an alternative approach denoted as linking-based revocation (LBR) which is based on the concept of controllable linkability. The novelty of LBR is its transparency for signers and verifiers that spares additional computations as well as updates. We therefore introduce dedicated revocation authorities (RAs) that can be contacted for efficient (constant time) revocation checks. In order to protect these RAs and to reduce the trust in involved online authorities, we additionally introduce distributed controllable linkability. Using latter, RAs cooperate with multiple authorities to compute the required linking information, thus reducing the required trust. Besides efficiency, an appealing benefit of LBR is its generic applicability to pairing-based GSSs secure in the BSZ model as well as GSSs with controllable linkability. This includes the XSGS scheme, and the GSSs proposed by Hwang et al., one of which has been standardized in the recent ISO 20008-2 standard

    A survey on group signature schemes

    Get PDF
    Group Signature, extension of digital signature, allows members of a group to sign messages on behalf of the group, such that the resulting signature does not reveal the identity of the signer. Any client can verify the authenticity of the document by using the public key parameters of the group. In case of dispute, only a designated group manager, because of his special property, is able to open signatures, and thus reveal the signer’s identity. Its applications are widespread, especially in e-commerce such as e-cash, e-voting and e-auction. This thesis incorporates the detailed study of various group signature schemes, their cryptographic concepts and the main contributions in this field. We implemented a popular group signature scheme based upon elliptic curve cryptosystems. Moreover, the group signature is dynamic i.e. remains valid, if some members leave the group or some new members join the group. Full traceability feature is also included in the implemented scheme. For enhanced security the the scheme implements distributed roles of the group manager. We also analysed various security features, formal models, challenges and cryptanalysis of some significant contributions in this area

    Group Signatures with Selective Linkability

    Get PDF
    Group signatures allow members of a group to anonymously produce signatures on behalf of the group. They are an important building block for privacy-enhancing applications, e.g., enabling user data to be collected in authenticated form while preserving the user’s privacy. The linkability between the signatures thereby plays a crucial role for balancing utility and privacy: knowing the correlation of events significantly increases the utility of the data but also severely harms the user’s privacy. Therefore group signatures are unlinkable per default, but either support linking or identity escrow through a dedicated central party or offer user-controlled linkability. However, both approaches have significant limitations. The former relies on a fully trusted entity and reveals too much information, and the latter requires exact knowledge of the needed linkability at the moment when the signatures are created. However, often the exact purpose of the data might not be clear at the point of data collection. In fact, data collectors tend to gather large amounts of data at first, but will need linkability only for selected, small subsets of the data. We introduce a new type of group signature that provides a more flexible and privacy-friendly access to such selective linkability. When created, all signatures are fully unlinkable. Only when strictly needed or desired, should the required pieces be made linkable with the help of a central entity. For privacy, this linkability is established in an oblivious and non-transitive manner. We formally define the requirements for this new type of group signatures and provide an efficient instantiation that provably satisfies these requirements under discrete-logarithm based assumptions

    Variants of Group Signatures and Their Applications

    Get PDF

    Road-to-Vehicle Communications with Time-Dependent Anonymity: A Light Weight Construction and its Experimental Results

    Get PDF
    This paper describes techniques that enable vehicles to collect local information (such as road conditions and traffic information) and report it via road-to-vehicle communications. To exclude malicious data, the collected information is signed by each vehicle. In this communications system, the location privacy of vehicles must be maintained. However, simultaneously linkable information (such as travel routes) is also important. That is, no such linkable information can be collected when full anonymity is guaranteed using cryptographic tools such as group signatures. Similarly, continuous linkability (via pseudonyms, for example) may also cause problem from the viewpoint of privacy. In this paper, we propose a road-to-vehicle communication system with relaxed anonymity via group signatures with time-token dependent linking (GS-TDL). Briefly, a vehicle is unlinkable unless it generates multiple signatures in the same time period. We provide our experimental results (using the RELIC library on a cheap and constrained computational power device, Raspberry Pi), and simulate our system by using a traffic simulator (PTV), a radio wave propagation analysis tool (RapLab), and a network simulator (QualNet). Though a similar functionality of time-token dependent linking was proposed by Wu, Domingo-Ferrer and Gonzälez-Nicoläs (IEEE T. Vehicular Technology 2010), we can show an attack against the scheme where anyone can forge a valid group signature without using a secret key. In contrast, our GS-TDL scheme is provably secure. In addition to the time-dependent linking property, our GS-TDL scheme supports verifier-local revocation (VLR), where a signer (vehicle) is not involved in the revocation procedure. It is particularly worth noting that no secret key or certificate of a signer (vehicle) must be updated whereas the security credential management system (SCMS) must update certificates frequently for vehicle privacy. Moreover, our technique maintains constant signing and verification costs by using the linkable part of signatures. This might be of independent interest

    Foundations of Fully Dynamic Group Signatures

    Get PDF
    Group signatures allow members of a group to anonymously sign on behalf of the group. Membership is administered by a designated group manager. The group manager can also reveal the identity of a signer if and when needed to enforce accountability and deter abuse. For group signatures to be applicable in practice, they need to support fully dynamic groups, i.e., users may join and leave at any time. Existing security definitions for fully dynamic group signatures are informal, have shortcomings, and are mutually incompatible. We fill the gap by providing a formal rigorous security model for fully dynamic group signatures. Our model is general and is not tailored toward a specific design paradigm and can therefore, as we show, be used to argue about the security of different existing constructions following different design paradigms. Our definitions are stringent and when possible incorporate protection against maliciously chosen keys. We consider both the case where the group management and tracing signatures are administered by the same authority, i.e., a single group manager, and also the case where those roles are administered by two separate authorities, i.e., a group manager and an opening authority. We also show that a specialization of our model captures existing models for static and partially dynamic schemes. In the process, we identify a subtle gap in the security achieved by group signatures using revocation lists. We show that in such schemes new members achieve a slightly weaker notion of traceability. The flexibility of our security model allows to capture such relaxation of traceability
    corecore