18,362 research outputs found

    Conformative Filtering for Implicit Feedback Data

    Full text link
    Implicit feedback is the simplest form of user feedback that can be used for item recommendation. It is easy to collect and is domain independent. However, there is a lack of negative examples. Previous work tackles this problem by assuming that users are not interested or not as much interested in the unconsumed items. Those assumptions are often severely violated since non-consumption can be due to factors like unawareness or lack of resources. Therefore, non-consumption by a user does not always mean disinterest or irrelevance. In this paper, we propose a novel method called Conformative Filtering (CoF) to address the issue. The motivating observation is that if there is a large group of users who share the same taste and none of them have consumed an item before, then it is likely that the item is not of interest to the group. We perform multidimensional clustering on implicit feedback data using hierarchical latent tree analysis (HLTA) to identify user `tastes' groups and make recommendations for a user based on her memberships in the groups and on the past behavior of the groups. Experiments on two real-world datasets from different domains show that CoF has superior performance compared to several common baselines

    Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction

    Full text link
    User response prediction, which models the user preference w.r.t. the presented items, plays a key role in online services. With two-decade rapid development, nowadays the cumulated user behavior sequences on mature Internet service platforms have become extremely long since the user's first registration. Each user not only has intrinsic tastes, but also keeps changing her personal interests during lifetime. Hence, it is challenging to handle such lifelong sequential modeling for each individual user. Existing methodologies for sequential modeling are only capable of dealing with relatively recent user behaviors, which leaves huge space for modeling long-term especially lifelong sequential patterns to facilitate user modeling. Moreover, one user's behavior may be accounted for various previous behaviors within her whole online activity history, i.e., long-term dependency with multi-scale sequential patterns. In order to tackle these challenges, in this paper, we propose a Hierarchical Periodic Memory Network for lifelong sequential modeling with personalized memorization of sequential patterns for each user. The model also adopts a hierarchical and periodical updating mechanism to capture multi-scale sequential patterns of user interests while supporting the evolving user behavior logs. The experimental results over three large-scale real-world datasets have demonstrated the advantages of our proposed model with significant improvement in user response prediction performance against the state-of-the-arts.Comment: SIGIR 2019. Reproducible codes and datasets: https://github.com/alimamarankgroup/HPM

    Who are Like-minded: Mining User Interest Similarity in Online Social Networks

    Full text link
    In this paper, we mine and learn to predict how similar a pair of users' interests towards videos are, based on demographic (age, gender and location) and social (friendship, interaction and group membership) information of these users. We use the video access patterns of active users as ground truth (a form of benchmark). We adopt tag-based user profiling to establish this ground truth, and justify why it is used instead of video-based methods, or many latent topic models such as LDA and Collaborative Filtering approaches. We then show the effectiveness of the different demographic and social features, and their combinations and derivatives, in predicting user interest similarity, based on different machine-learning methods for combining multiple features. We propose a hybrid tree-encoded linear model for combining the features, and show that it out-performs other linear and treebased models. Our methods can be used to predict user interest similarity when the ground-truth is not available, e.g. for new users, or inactive users whose interests may have changed from old access data, and is useful for video recommendation. Our study is based on a rich dataset from Tencent, a popular service provider of social networks, video services, and various other services in China

    Joint Deep Modeling of Users and Items Using Reviews for Recommendation

    Full text link
    A large amount of information exists in reviews written by users. This source of information has been ignored by most of the current recommender systems while it can potentially alleviate the sparsity problem and improve the quality of recommendations. In this paper, we present a deep model to learn item properties and user behaviors jointly from review text. The proposed model, named Deep Cooperative Neural Networks (DeepCoNN), consists of two parallel neural networks coupled in the last layers. One of the networks focuses on learning user behaviors exploiting reviews written by the user, and the other one learns item properties from the reviews written for the item. A shared layer is introduced on the top to couple these two networks together. The shared layer enables latent factors learned for users and items to interact with each other in a manner similar to factorization machine techniques. Experimental results demonstrate that DeepCoNN significantly outperforms all baseline recommender systems on a variety of datasets.Comment: WSDM 201

    A Broad Learning Approach for Context-Aware Mobile Application Recommendation

    Full text link
    With the rapid development of mobile apps, the availability of a large number of mobile apps in application stores brings challenge to locate appropriate apps for users. Providing accurate mobile app recommendation for users becomes an imperative task. Conventional approaches mainly focus on learning users' preferences and app features to predict the user-app ratings. However, most of them did not consider the interactions among the context information of apps. To address this issue, we propose a broad learning approach for \textbf{C}ontext-\textbf{A}ware app recommendation with \textbf{T}ensor \textbf{A}nalysis (CATA). Specifically, we utilize a tensor-based framework to effectively integrate user's preference, app category information and multi-view features to facilitate the performance of app rating prediction. The multidimensional structure is employed to capture the hidden relationships between multiple app categories with multi-view features. We develop an efficient factorization method which applies Tucker decomposition to learn the full-order interactions within multiple categories and features. Furthermore, we employ a group ℓ1−\ell_{1}-norm regularization to learn the group-wise feature importance of each view with respect to each app category. Experiments on two real-world mobile app datasets demonstrate the effectiveness of the proposed method
    • …
    corecore