102,625 research outputs found

    Multi-criteria group decision-making method for green supplier selection based on distributed interval variables

    Get PDF
    Addressing the multi-criteria group decision making problem with interval attribute values and attribute weights, this paper proposes a decision method based on attribute distribution information. The selection of green suppliers is taken as an example for decision analysis. First, in the case of group decision-making, the quantitative values of the evaluation attributes of green suppliers are imputed by decision-makers, and the relevant distributions are constructed for each attribute. Next, combined with the ranges of attribute values, the random interval values are used to describe the information represented by each attribute to overcome the loss caused by the aggregation of individual expert information into group information. We then propose the distributed interval weighted arithmetic average (DIWAA) operator and corresponding operation rules, which realizes the fusion of qualitative data and quantitative judgment. Thus, the proposed approach allows ensuring reasonable results of the multi-criteria analysis. We also construct a ranking method for alternatives based on distributed interval comprehensive scores. Finally, we verify the feasibility and effectiveness of the proposed method for the task of green supplier selection through numerical experiments

    Method of Group Decision Making with Interval Grey Numbers based on Grey Correlation and Relative Close Degree

    Get PDF
    With the development of society, big data\u27s concept is mentioned more and more. However, in the numerous and complex mass data, the effective information is often very limited, and the data often show the complex characteristics of "close and orderly short-term correlation and large long-term disturbance", which is difficult to be expressed by a long sequence composed of a single real value. This paper takes the interval grey number as the research object for the uncertain system of "less data and poor information". According to the multi-attribute group decisions problem with attribute’s values of interval grey number and the weights of decision-makers and attributes that are completely unknown, a method of group decision making with interval grey numbers based on grey correlation and relative close degree is proposed. For the purpose of making effective decisions, the weights of decision-makers and attributes are calculated by correlation degree of decision information which is measured by the model of grey correlation analysis based on interval grey number deviation degree. On this basis, the correlation degree between the scheme and the positive and negative ideal schemes are computed, and then the grey correlation and relative close degree of the scheme is calculated. Finally, the scheme is sorted according to the value of the grey correlation and relative close degree. The rationality and feasibility of the proposed method are verified by numerical examples

    TOPSIS-RTCID for range target-based criteria and interval data

    Full text link
    [EN] The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is receiving considerable attention as an essential decision analysis technique and becoming a leading method. This paper describes a new version of TOPSIS with interval data and capability to deal with all types of criteria. An improved structure of the TOPSIS is presented to deal with high uncertainty in engineering and engineering decision-making. The proposed Range Target-based Criteria and Interval Data model of TOPSIS (TOPSIS-RTCID) achieves the core contribution in decision making theories through a distinct normalization formula for cost and benefits criteria in scale of point and range target-based values. It is important to notice a very interesting property of the proposed normalization formula being opposite to the usual one. This property can explain why the rank reversal problem is limited. The applicability of the proposed TOPSIS-RTCID method is examined with several empirical litreture’s examples with comparisons, sensitivity analysis, and simulation. The authors have developed a new tool with more efficient, reliable and robust outcomes compared to that from other available tools. The complexity of an engineering design decision problem can be resolved through the development of a well-structured decision making method with multiple attributes. Various decision approches developed for engineering design have neglected elements that should have been taken into account. Through this study, engineering design problems can be resolved with greater reliability and confidence.Jahan, A.; Yazdani, M.; Edwards, K. (2021). TOPSIS-RTCID for range target-based criteria and interval data. International Journal of Production Management and Engineering. 9(1):1-14. https://doi.org/10.4995/ijpme.2021.13323OJS11491Ahn, B.S. (2017). The analytic hierarchy process with interval preference statements. Omega, 67, 177-185. https://doi.org/10.1016/j.omega.2016.05.004Alemi-Ardakani, M., Milani, A.S., Yannacopoulos, S., Shokouhi, G. (2016). On the effect of subjective, objective and combinative weighting in multiple criteria decision making: A case study on impact optimization of composites. Expert Systems With Applications, 46, 426-438. https://doi.org/10.1016/j.eswa.2015.11.003Amiri, M., Nosratian, N.E., Jamshidi, A., Kazemi, A. (2008). Developing a new ELECTRE method with interval data in multiple attribute decision making problems. Journal of Applied Sciences, 8, 4017-4028. https://doi.org/10.3923/jas.2008.4017.4028Bahraminasab, M., Jahan, A. (2011). Material selection for femoral component of total knee replacement using comprehensive VIKOR. Materials & Design, 32, 4471-4477. https://doi.org/10.1016/j.matdes.2011.03.046Baradaran, V., Azarnia, S. (2013). An Approach to Test Consistency and Generate Weights from Grey Pairwise Matrices in Grey Analytical Hierarchy Process. Journal of Grey System, 25.Behzadian, M., Otaghsara, S.K., Yazdani, M., Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39, 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056Cables, E., Lamata, M.T., Verdegay, J.L. (2018). FRIM-Fuzzy Reference Ideal Method in Multicriteria Decision Making. In Collan, M. & Kacprzyk, J. (Eds.) Soft Computing Applications for Group Decision-making and Consensus Modeling. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-319-60207-3_19Çakır, S. (2016). An integrated approach to machine selection problem using fuzzy SMART-fuzzy weighted axiomatic design. Journal of Intelligent Manufacturing, 1-13. https://doi.org/10.1007/s10845-015-1189-3Celen, A. (2014). Comparative analysis of normalization procedures in TOPSIS method: with an application to Turkish deposit banking market. Informatica, 25, 185-208. https://doi.org/10.15388/Informatica.2014.10Celik, E., Erdogan, M., Gumus, A. (2016). An extended fuzzy TOPSIS-GRA method based on different separation measures for green logistics service provider selection. International Journal of Environmental Science and Technology, 13, 1377-1392. https://doi.org/10.1007/s13762-016-0977-4Dymova, L., Sevastjanov, P., Tikhonenko, A. (2013). A direct interval extension of TOPSIS method. Expert Systems With Applications, 40, 4841-4847. https://doi.org/10.1016/j.eswa.2013.02.022Garca-Cascales, M.S., Lamata, M.T. (2012). On rank reversal and TOPSIS method. Mathematical and Computer Modelling, 56, 123-132. https://doi.org/10.1016/j.mcm.2011.12.022Hafezalkotob, A., Hafezalkotob, A. (2015). Comprehensive MULTIMOORA method with target-based attributes and integrated significant coefficients for materials selection in biomedical applications. Materials & Design, 87, 949-959. https://doi.org/10.1016/j.matdes.2015.08.087Hafezalkotob, A., Hafezalkotob, A. (2016). Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection. Journal of Industrial Engineering International, 13, 181-198. https://doi.org/10.1007/s40092-016-0176-4Hafezalkotob, A., Hafezalkotob, A. (2017). Interval target-based VIKOR method supported on interval distance and preference degree for machine selection. Engineering Applications of Artificial Intelligence, 57, 184-196. https://doi.org/10.1016/j.engappai.2016.10.018Hafezalkotob, A., Hafezalkotob, A., Sayadi, M.K. (2016). Extension of MULTIMOORA method with interval numbers: An application in materials selection. Applied Mathematical Modelling, 40, 1372-1386. https://doi.org/10.1016/j.apm.2015.07.019Hajiagha, S.H.R., Hashemi, S.S., Zavadskas, E.K., Akrami, H. (2012). Extensions of LINMAP model for multi criteria decision making with grey numbers. Technological and Economic Development of Economy, 18, 636-650. https://doi.org/10.3846/20294913.2012.740518Hazelrigg, G.A. (2003). Validation of engineering design alternative selection methods. Engineering Optimization, 35, 103-120. https://doi.org/10.1080/0305215031000097059Hu, J., Du, Y., Mo, H., Wei, D., Deng, Y. (2016). A modified weighted TOPSIS to identify influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 444, 73-85. https://doi.org/10.1016/j.physa.2015.09.028Huang, Y., Jiang, W. (2018). Extension of TOPSIS Method and its Application in Investment. Arabian Journal for Science and Engineering, 43, 693-705. https://doi.org/10.1007/s13369-017-2736-3Jahan, A. (2018). Developing WASPAS-RTB method for range target-based criteria: toward selection for robust design. Technological and Economic Development of Economy, 24, 1362-1387. https://doi.org/10.3846/20294913.2017.1295288Jahan, A., Bahraminasab, M., Edwards, K.L. (2012). A target-based normalization technique for materials selection. Materials & Design, 35, 647-654. https://doi.org/10.1016/j.matdes.2011.09.005Jahan, A., Edwards, K.L. (2013). VIKOR method for material selection problems with interval numbers and target-based criteria. Materials & Design, 47, 759-765. https://doi.org/10.1016/j.matdes.2012.12.072Jahan, A., Edwards, K.L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design, 65, 335-342. https://doi.org/10.1016/j.matdes.2014.09.022Jahan, A., Edwards, K.L., Bahraminasab, M. (2016). Multi-criteria decision analysis for supporting the selection of engineering materials in product design, Oxford, Butterworth-Heinemann.Jahan, A., Mustapha, F., Ismail, M.Y., Sapuan, S.M., Bahraminasab, M. (2011). A comprehensive VIKOR method for material selection. Materials & Design, 32, 1215-1221. https://doi.org/10.1016/j.matdes.2010.10.015Jahan, A., Zavadskas, E.K. (2018). ELECTRE-IDAT for design decision-making problems with interval data and target-based criteria. Soft Computing, 23, 129-143. https://doi.org/10.1007/s00500-018-3501-6Jahanshahloo, G.R., Hosseinzadeh Lotfi, F., Davoodi, A.R. (2009). Extension of TOPSIS for decision-making problems with interval data: Interval efficiency. Mathematical and Computer Modelling, 49, 1137-1142. https://doi.org/10.1016/j.mcm.2008.07.009Jahanshahloo, G.R., Lotfi, F.H., Izadikhah, M. (2006). An algorithmic method to extend TOPSIS for decision-making problems with interval data. Applied Mathematics and Computation, 175, 1375-1384. https://doi.org/10.1016/j.amc.2005.08.048Kasirian, M., Yusuff, R. (2013). An integration of a hybrid modified TOPSIS with a PGP model for the supplier selection with interdependent criteria. International Journal of Production Research, 51, 1037-1054. https://doi.org/10.1080/00207543.2012.663107Kuo, T. (2017). A modified TOPSIS with a different ranking index. European Journal of Operational Research, 260, 152-160. https://doi.org/10.1016/j.ejor.2016.11.052Liang, D., Xu, Z. (2017). The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets. Applied Soft Computing, 60, 167-179. https://doi.org/10.1016/j.asoc.2017.06.034Liao, H., Wu, X. (2019). DNMA: A double normalization-based multiple aggregation method for multi-expert multi-criteria decision making. Omega, 94. 102058. https://doi.org/10.1016/j.omega.2019.04.001Liu, H.C., You, J.X., Zhen, L., Fan, X.J. (2014). A novel hybrid multiple criteria decision making model for material selection with targetbased criteria. Materials & Design, 60, 380-390. https://doi.org/10.1016/j.matdes.2014.03.071Maghsoodi, A.I., Maghsoodi, A.I., Poursoltan, P., Antucheviciene, J., Turskis, Z. (2019). Dam construction material selection by implementing the integrated SWARA-CODAS approach with target-based attributes. Archives of Civil and Mechanical Engineering, 19, 1194-1210. https://doi.org/10.1016/j.acme.2019.06.010Milani, A.S., Shanian, A., Madoliat, R., Nemes, J.A. (2005). The effect of normalization norms in multiple attribute decision making models: a case study in gear material selection. Structural and Multidisciplinary Optimization, 29, 312-318. https://doi.org/10.1007/s00158-004-0473-1Peldschus, F. (2009). The analysis of the quality of the results obtained with the methods of multi-criteria decisions. Technological and Economic Development of Economy, 15, 580-592. https://doi.org/10.3846/1392-8619.2009.15.580-592Peldschus, F. (2018). Recent findings from numerical analysis in multi-criteria decision making. Technological and Economic Development of Economy, 24, 1695-1717. https://doi.org/10.3846/20294913.2017.1356761Perez, E.C., Lamata, M., Verdegay, J. (2016). RIM-Reference Ideal Method in Multicriteria Decision Making. Information Sciences, 337- 338, 1-10. https://doi.org/10.1016/j.ins.2015.12.011Sayadi, M.K., Heydari, M., Shahanaghi, K. (2009). Extension of VIKOR method for decision making problem with interval numbers. Applied Mathematical Modelling, 33, 2257-2262. https://doi.org/10.1016/j.apm.2008.06.002Sen, P., Yang, J.B. (1998). MCDM and the Nature of Decision Making in Design, Springer. https://doi.org/10.1007/978-1-4471-3020-8_2Sevastianov, P. (2007). Numerical methods for interval and fuzzy number comparison based on the probabilistic approach and Dempster- Shafer theory. Information Sciences, 177, 4645-4661. https://doi.org/10.1016/j.ins.2007.05.001Shanian, A., Savadogo, O. (2009). A methodological concept for material selection of highly sensitive components based on multiple criteria decision analysis. Expert Systems With Applications, 36, 1362-1370. https://doi.org/10.1016/j.eswa.2007.11.052Shen, F., Ma, X., Li, Z., Xu, Z., Cai, D. (2018). An extended intuitionistic fuzzy TOPSIS method based on a new distance measure with an application to credit risk evaluation. Information Sciences, 428, 105-119. https://doi.org/10.1016/j.ins.2017.10.045Shishank, S., Dekkers, R. (2013). Outsourcing: decision-making methods and criteria during design and engineering. Production Planning & Control, 24, 318-336. https://doi.org/10.1080/09537287.2011.648544Shouzhen, Z., Yao, X. (2018). A method based on TOPSIS and distance measures for hesitant fuzzy multiple attribute decision making. Technological and Economic Development of Economy, 24, 969-983. https://doi.org/10.3846/20294913.2016.1216472Stanujkic, D., Magdalinovic, N., Jovanovic, R., Stojanovic, S. (2012). An objective multi-criteria approach to optimization using MOORA method and interval grey numbers. Technological and Economic Development of Economy, 18, 331-363. https://doi.org/10.3846/20294913.2012.676996Suder, A., Kahraman, C. (2018). Multiattribute evaluation of organic and inorganic agricultural food investments using fuzzy TOPSIS. Technological and Economic Development of Economy, 24, 844-858. https://doi.org/10.3846/20294913.2016.1216905Tilstra, A.H., Backlund, P.B., Seepersad, C.C., Wood, K.L. (2015). Principles for designing products with flexibility for future evolution. International Journal of Mass Customisation, 5, 22-54. https://doi.org/10.1504/IJMASSC.2015.069597Tsaur, R.C. (2011) Decision risk analysis for an interval TOPSIS method. Applied Mathematics and Computation, 218, 4295-4304. https://doi.org/10.1016/j.amc.2011.10.001Turskis, Z., Zavadskas, E.K. (2010) A novel method for multiple criteria analysis: grey additive ratio assessment (ARAS-G) method. Informatica, 21, 597-610. https://doi.org/10.15388/Informatica.2010.307Wang, Y.M., Luo, Y. (2009) On rank reversal in decision analysis. Mathematical and Computer Modelling, 49, 1221-1229. https://doi.org/10.1016/j.mcm.2008.06.019Ye, J. (2015) An extended TOPSIS method for multiple attribute group decision making based on single valued neutrosophic linguistic numbers. Journal of Intelligent & Fuzzy Systems, 28, 247-255. https://doi.org/10.3233/IFS-141295Yue, Z. (2013) Group decision making with multi-attribute interval data. Information Fusion, 14, 551-561. https://doi.org/10.1016/j.inffus.2013.01.00

    The interval TOPSIS method for group decision making

    Get PDF
    Cel – Celem pracy jest przedstawienie nowego podejƛcia do rankingu wariantĂłw decyzyjnych z danymi przedziaƂowymi dla grupowego podejmowania decyzji, wykorzystującego metodę TOPSIS. Metodologia badania – W proponowanym podejƛciu, wszystkie pojedyncze oceny decydentĂłw są brane pod uwagę w wyznaczaniu koƄcowych ocen wariantĂłw decyzyjnych oraz ich rankingu. Kluczowym jego elementem jest przeksztaƂcenie macierzy decyzyjnych dostarczonych przez decydentĂłw, w macierze wariantĂłw decyzyjnych. Wynik – Nowe podejƛcie do grupowego podejmowania decyzji wykorzystujące metodę TOPSIS. Oryginalnoƛć/wartoƛć – Proponowane podejƛcie jest nowatorskie oraz Ƃatwe w uĆŒyciu.Goal – The purpose of the paper is to present a new approach to the ranking of alternatives with interval data for group decision making using the TOPSIS method. Research methodology – In the proposed approach, all individual assessments of decision makers are taken into account in determining the final assessments of alternatives and their ranking. The key stage of the proposed approach is the transformation of the decision matrices provided by the decision makers into a matrices of alternatives. Score – A new approach for group decision making using the TOPSIS method. Originality/value – The proposed approach is innovative and easy to use.Badania zostaƂy zrealizowane w ramach pracy nr S/WI/1/2016 i sfinansowane ze ƛrodkĂłw na naukę [email protected]Ƃ Informatyki, Politechnika BiaƂostockaAbdullah L., Adawiyah C.W.R., 2014, Simple Additive Weighting Methods of Multicriteria Decision Making and Applications: A Decade Review, “International Journal of Information Processing and Management”, vol. 5(1), pp. 39-49.Behzadian M., Otaghsara S.K., Yazdani M., Ignatius J., 2012, A state-of the art survey of TOPSIS applications, “Expert Systems with Applications”, vol. 39, pp. 13051-13069.Boran F.E., Genc S., Kurt M., Akay D., 2009, A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method, “Expert Systems with Applications”, vol. 36, pp. 11363-11368.Chen C.T., 2000, Extensions of the TOPSIS for group decision-making under fuzzy environment, “Fuzzy Sets and Systems”, vol. 114, pp. 1-9.Cloud M. J., Kearfott R.B., Moore R.E., 2009, Introduction to Interval Analysis, SIAM, Philadelphia.Dymova L., Sevastjanova P., Tikhonenko A., 2013, A direct interval extension of TOPSIS method, “Expert Systems with Applications”, vol. 40, pp. 4841-4847.Hu B.Q., Wang S., 2006, A Novel Approach in Uncertain Programming Part I: New Arithmetic and Order Relation for Interval Numbers, “Journal of Industrial and Management Optimization”, vol. 2(4), pp. 351-371.Hwang C.L., Yoon K. 1981 Multiple Attribute Decision Making: Methods and Applications, Springer-Verlag, Berlin.Jahanshahloo G.R., Hosseinzadeh Lotfi F., Izadikhah M., 2006, An Algorithmic Method to Extend TOPSIS for Decision Making Problems with Interval Data, “Applied Mathematics and Computation”, vol. 175, pp. 1375-1384.Kacprzak D., 2017, Objective Weights Based on Ordered Fuzzy Numbers for Fuzzy Multiple Criteria Decision Making Methods, “Entropy”, vol. 19(7), pp. 373.Kacprzak D., 2018, Metoda SAW z przedziaƂowymi danymi i wagami uzyskanymi za pomocą przedziaƂowej entropii Shannona, „Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach”, vol. 348, pp. 144-155.Kacprzak D., 2019, A doubly extended TOPSIS method for group decision making based on ordered fuzzy numbers, “Expert Systems with Applications”, vol. 116, pp. 243-254.Roszkowska E., 2009, Application TOPSIS methods for ordering offers in buyer-seller transaction, “OPTIMUM, Studia Ekonomiczne”, vol. 3(43), pp. 117-133.Roszkowska E., 2011, Multi-Criteria Decision Making Models by Applying the TOPSIS Method to Crisp and Interval Data, “Multiple Criteria Decision Making”, vol. 6, pp. 200-230.Roszkowska E., Kacprzak D., 2016, The fuzzy SAW and fuzzy TOPSIS procedures based on ordered fuzzy numbers, “Information Sciences”, vol. 369, pp. 564-584.Rudnik K., Kacprzak D., 2017, Fuzzy TOPSIS method with ordered fuzzy numbers for flow control in a manufacturing system, “Applied Soft Computing”, vol. 52, pp. 1020-1041.Senvar O., Otay Ä°., BoltĂŒrk E., 2016, Hospital site selection via hesitant fuzzy TOPSIS. “IFAC-PapersOnLine”, vol. 49, pp. 1140-1145.Shih H.S., Shyur H.J., Lee E.S., 2007, An extension of TOPSIS for group decision making, “Mathematical and Computer Modelling”, vol. 45, pp. 801-813.Wang T.C., Chang T.H., 2007, Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment, “Expert Systems with Applications”, vol. 33, pp. 870-880.Ye F., Li Y.N., 2009, Group multi-attribute decision model to partner selection in the formation of virtual enterprise under incomplete information, “Expert Systems with Applications”, vol. 36, pp. 9350-9357.Yue Z., 2011, An extended TOPSIS for determining weights of decision makers with interval numbers, “Knowledge-Based Systems”, vol. 24, pp. 146-153.Yue Z., 2012, Developing a straightforward approach for group decision making based on determining weights of decision makers, “Applied Mathematical Modelling”, vol. 36, pp. 4106-4117.4(94)25627

    Evaluating strategies for implementing industry 4.0: a hybrid expert oriented approach of B.W.M. and interval valued intuitionistic fuzzy T.O.D.I.M.

    Get PDF
    open access articleDeveloping and accepting industry 4.0 influences the industry structure and customer willingness. To a successful transition to industry 4.0, implementation strategies should be selected with a systematic and comprehensive view to responding to the changes flexibly. This research aims to identify and prioritise the strategies for implementing industry 4.0. For this purpose, at first, evaluation attributes of strategies and also strategies to put industry 4.0 in practice are recognised. Then, the attributes are weighted to the experts’ opinion by using the Best Worst Method (BWM). Subsequently, the strategies for implementing industry 4.0 in Fara-Sanat Company, as a case study, have been ranked based on the Interval Valued Intuitionistic Fuzzy (IVIF) of the TODIM method. The results indicated that the attributes of ‘Technology’, ‘Quality’, and ‘Operation’ have respectively the highest importance. Furthermore, the strategies for “new business models development’, ‘Improving information systems’ and ‘Human resource management’ received a higher rank. Eventually, some research and executive recommendations are provided. Having strategies for implementing industry 4.0 is a very important solution. Accordingly, multi-criteria decision-making (MCDM) methods are a useful tool for adopting and selecting appropriate strategies. In this research, a novel and hybrid combination of BWM-TODIM is presented under IVIF information

    Fuzzy Interval-Valued Multi Criteria Based Decision Making for Ranking Features in Multi-Modal 3D Face Recognition

    Get PDF
    Soodamani Ramalingam, 'Fuzzy interval-valued multi criteria based decision making for ranking features in multi-modal 3D face recognition', Fuzzy Sets and Systems, In Press version available online 13 June 2017. This is an Open Access paper, made available under the Creative Commons license CC BY 4.0 https://creativecommons.org/licenses/by/4.0/This paper describes an application of multi-criteria decision making (MCDM) for multi-modal fusion of features in a 3D face recognition system. A decision making process is outlined that is based on the performance of multi-modal features in a face recognition task involving a set of 3D face databases. In particular, the fuzzy interval valued MCDM technique called TOPSIS is applied for ranking and deciding on the best choice of multi-modal features at the decision stage. It provides a formal mechanism of benchmarking their performances against a set of criteria. The technique demonstrates its ability in scaling up the multi-modal features.Peer reviewedProo
    • 

    corecore