759 research outputs found

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems

    The state of the art development of AHP (1979-2017): A literature review with a social network analysis

    Get PDF
    Although many papers describe the evolution of the analytic hierarchy process (AHP), most adopt a subjective approach. This paper examines the pattern of development of the AHP research field using social network analysis and scientometrics, and identifies its intellectual structure. The objectives are: (i) to trace the pattern of development of AHP research; (ii) to identify the patterns of collaboration among authors; (iii) to identify the most important papers underpinning the development of AHP; and (iv) to discover recent areas of interest. We analyse two types of networks: social networks, that is, co-authorship networks, and cognitive mapping or the network of disciplines affected by AHP. Our analyses are based on 8441 papers published between 1979 and 2017, retrieved from the ISI Web of Science database. To provide a longitudinal perspective on the pattern of evolution of AHP, we analyse these two types of networks during the three periods 1979?1990, 1991?2001 and 2002?2017. We provide some basic statistics on AHP journals and researchers, review the main topics and applications of integrated AHPs and provide direction for future research by highlighting some open questions

    The state of the art development of AHP (1979-2017): a literature review with a social network analysis

    Get PDF
    Although many papers describe the evolution of the analytic hierarchy process (AHP), most adopt a subjective approach. This paper examines the pattern of development of the AHP research field using social network analysis and scientometrics, and identifies its intellectual structure. The objectives are: (i) to trace the pattern of development of AHP research; (ii) to identify the patterns of collaboration among authors; (iii) to identify the most important papers underpinning the development of AHP; and (iv) to discover recent areas of interest. We analyse two types of networks: social networks, that is, co-authorship networks, and cognitive mapping or the network of disciplines affected by AHP. Our analyses are based on 8441 papers published between 1979 and 2017, retrieved from the ISI Web of Science database. To provide a longitudinal perspective on the pattern of evolution of AHP, we analyse these two types of networks during the three periods 1979–1990, 1991–2001 and 2002–2017. We provide some basic statistics on AHP journals and researchers, review the main topics and applications of integrated AHPs and provide direction for future research by highlighting some open questions

    Defuzzification of groups of fuzzy numbers using data envelopment analysis

    Get PDF
    Defuzzification is a critical process in the implementation of fuzzy systems that converts fuzzy numbers to crisp representations. Few researchers have focused on cases where the crisp outputs must satisfy a set of relationships dictated in the original crisp data. This phenomenon indicates that these crisp outputs are mathematically dependent on one another. Furthermore, these fuzzy numbers may exist as a group of fuzzy numbers. Therefore, the primary aim of this thesis is to develop a method to defuzzify groups of fuzzy numbers based on Charnes, Cooper, and Rhodes (CCR)-Data Envelopment Analysis (DEA) model by modifying the Center of Gravity (COG) method as the objective function. The constraints represent the relationships and some additional restrictions on the allowable crisp outputs with their dependency property. This leads to the creation of crisp values with preserved relationships and/or properties as in the original crisp data. Comparing with Linear Programming (LP) based model, the proposed CCR-DEA model is more efficient, and also able to defuzzify non-linear fuzzy numbers with accurate solutions. Moreover, the crisp outputs obtained by the proposed method are the nearest points to the fuzzy numbers in case of crisp independent outputs, and best nearest points to the fuzzy numbers in case of dependent crisp outputs. As a conclusion, the proposed CCR-DEA defuzzification method can create either dependent crisp outputs with preserved relationship or independent crisp outputs without any relationship. Besides, the proposed method is a general method to defuzzify groups or individuals fuzzy numbers under the assumption of convexity with linear and non-linear membership functions or relationships

    Supplier evaluation and selection in fuzzy environments: a review of MADM approaches

    Get PDF
    In past years, the multi-attribute decision-making (MADM) approaches have been extensively applied by researchers to the supplier evaluation and selection problem. Many of these studies were performed in an uncertain environment described by fuzzy sets. This study provides a review of applications of MADM approaches for evaluation and selection of suppliers in a fuzzy environment. To this aim, a total of 339 publications were examined, including papers in peer-reviewed journals and reputable conferences and also some book chapters over the period of 2001 to 2016. These publications were extracted from many online databases and classified in some categories and subcategories according to the MADM approaches, and then they were analysed based on the frequency of approaches, number of citations, year of publication, country of origin and publishing journals. The results of this study show that the AHP and TOPSIS methods are the most popular approaches. Moreover, China and Taiwan are the top countries in terms of number of publications and number of citations, respectively. The top three journals with highest number of publications were: Expert Systems with Applications, International Journal of Production Research and The International Journal of Advanced Manufacturing Technology

    A hybrid method of GRA and DEA for evaluating and selecting efficient suppliers plus a novel ranking method for grey numbers

    Get PDF
    Purpose: Evaluation and selection of efficient suppliers is one of the key issues in supply chain management which depends on wide range of qualitative and quantitative criteria. The aim of this research is to develop a mathematical model for evaluating and selecting efficient suppliers when faced with supply and demand uncertainties. Design/methodology/approach: In this research Grey Relational Analysis (GRA) and Data Envelopment Analysis (DEA) are used to evaluate and select efficient suppliers under uncertainties. Furthermore, a novel ranking method is introduced for the units that their efficiencies are obtained in the form of interval grey numbers. Findings: The study indicates that the proposed model in addition to providing satisfactory and acceptable results avoids time-consuming computations and consequently reduces the solution time. To name another advantage of the proposed model, we can point out that it enables us to make decision based on different levels of risk. Originality/value: The paper presents a mathematical model for evaluating and selecting efficient suppliers in a stochastic environment so that companies can use in order to make better decisions.Peer Reviewe

    Robust optimization in data envelopment analysis: extended theory and applications.

    Get PDF
    Performance evaluation of decision-making units (DMUs) via the data envelopment analysis (DEA) is confronted with multi-conflicting objectives, complex alternatives and significant uncertainties. Visualizing the risk of uncertainties in the data used in the evaluation process is crucial to understanding the need for cutting edge solution techniques to organizational decisions. A greater management concern is to have techniques and practical models that can evaluate their operations and make decisions that are not only optimal but also consistent with the changing environment. Motivated by the myriad need to mitigate the risk of uncertainties in performance evaluations, this thesis focuses on finding robust and flexible evaluation strategies to the ranking and classification of DMUs. It studies performance measurement with the DEA tool and addresses the uncertainties in data via the robust optimization technique. The thesis develops new models in robust data envelopment analysis with applications to management science, which are pursued in four research thrust. In the first thrust, a robust counterpart optimization with nonnegative decision variables is proposed which is then used to formulate new budget of uncertainty-based robust DEA models. The proposed model is shown to save the computational cost for robust optimization solutions to operations research problems involving only positive decision variables. The second research thrust studies the duality relations of models within the worst-case and best-case approach in the input \u2013 output orientation framework. A key contribution is the design of a classification scheme that utilizes the conservativeness and the risk preference of the decision maker. In the third thrust, a new robust DEA model based on ellipsoidal uncertainty sets is proposed which is further extended to the additive model and compared with imprecise additive models. The final thrust study the modelling techniques including goal programming, robust optimization and data envelopment to a transportation problem where the concern is on the efficiency of the transport network, uncertainties in the demand and supply of goods and a compromising solution to multiple conflicting objectives of the decision maker. Several numerical examples and real-world applications are made to explore and demonstrate the applicability of the developed models and their essence to management decisions. Applications such as the robust evaluation of banking efficiency in Europe and in particular Germany and Italy are made. Considering the proposed models and their applications, efficiency analysis explored in this research will correspond to the practical framework of industrial and organizational decision making and will further advance the course of robust management decisions

    Environmental efficiency of marine cage lobster aquaculture in Vietnam

    Get PDF

    A New Dynamic Random Fuzzy DEA Model to Predict Performance of Decision Making Units

    Get PDF
    Data envelopment analysis (DEA) is a methodology for measuring the relative efficiency of decision making units (DMUs) which ‎consume the same types of inputs and producing the same types of outputs. Believing that future planning and predicting the ‎efficiency are very important for DMUs, this paper first presents a new dynamic random fuzzy DEA model (DRF-DEA) with ‎common weights (using multi objective DEA approach) to predict the efficiency of DMUs under mean chance constraints and ‎expected values of the objective functions. In the initial proposed†â€DRF-DEA model, the inputs and outputs are assumed to be ‎characterized by random triangular fuzzy variables with normal distribution, in which data are changing sequentially. Under this ‎assumption, the solution process is very complex. So we then convert the initial proposed DRF-DEA model to its equivalent multi-‎objective stochastic programming, in which the constraints contain the standard normal distribution functions, and the objective ‎functions are the expected values of functions of normal random variables. In order to improve in computational time, we then ‎convert the equivalent multi-objective stochastic model to one objective stochastic model with using fuzzy multiple objectives ‎programming approach. To solve it, we design a new hybrid algorithm by integrating Monte Carlo (MC) simulation and Genetic ‎Algorithm (GA). Since no benchmark is available in the literature, one practical example will be presented. The computational results ‎show that our hybrid algorithm outperforms the hybrid GA algorithm which was proposed by Qin and Liu (2010) in terms of ‎runtime and solution quality. â€
    corecore