2,627 research outputs found

    The Most Exigent Eigenvalue: Guaranteeing Consensus under an Unknown Communication Topology and Time Delays

    Full text link
    This document aims to answer the question of what is the minimum delay value that guarantees convergence to consensus for a group of second order agents operating under different protocols, provided that the communication topology is connected but unknown. That is, for all the possible communication topologies, which value of the delay guarantees stability? To answer this question we revisit the concept of most exigent eigenvalue, applying it to two different consensus protocols for agents driven by second order dynamics. We show how the delay margin depends on the structure of the consensus protocol and the communication topology, and arrive to a boundary that guarantees consensus for any connected communication topology. The switching topologies case is also studied. It is shown that for one protocol the stability of the individual topologies is sufficient to guarantee consensus in the switching case, whereas for the other one it is not

    Pose consensus based on dual quaternion algebra with application to decentralized formation control of mobile manipulators

    Full text link
    This paper presents a solution based on dual quaternion algebra to the general problem of pose (i.e., position and orientation) consensus for systems composed of multiple rigid-bodies. The dual quaternion algebra is used to model the agents' poses and also in the distributed control laws, making the proposed technique easily applicable to time-varying formation control of general robotic systems. The proposed pose consensus protocol has guaranteed convergence when the interaction among the agents is represented by directed graphs with directed spanning trees, which is a more general result when compared to the literature on formation control. In order to illustrate the proposed pose consensus protocol and its extension to the problem of formation control, we present a numerical simulation with a large number of free-flying agents and also an application of cooperative manipulation by using real mobile manipulators
    • …
    corecore