34,781 research outputs found

    Resolving Structure in Human Brain Organization: Identifying Mesoscale Organization in Weighted Network Representations

    Full text link
    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.Comment: Comments welcom

    Chinese Internet AS-level Topology

    Full text link
    We present the first complete measurement of the Chinese Internet topology at the autonomous systems (AS) level based on traceroute data probed from servers of major ISPs in mainland China. We show that both the Chinese Internet AS graph and the global Internet AS graph can be accurately reproduced by the Positive-Feedback Preference (PFP) model with the same parameters. This result suggests that the Chinese Internet preserves well the topological characteristics of the global Internet. This is the first demonstration of the Internet's topological fractality, or self-similarity, performed at the level of topology evolution modeling.Comment: This paper is a preprint of a paper submitted to IEE Proceedings on Communications and is subject to Institution of Engineering and Technology Copyright. If accepted, the copy of record will be available at IET Digital Librar

    Data fragmentation for parallel transitive closure strategies

    Get PDF
    Addresses the problem of fragmenting a relation to make the parallel computation of the transitive closure efficient, based on the disconnection set approach. To better understand this design problem, the authors focus on transportation networks. These are characterized by loosely interconnected clusters of nodes with a high internal connectivity rate. Three requirements that have to be fulfilled by a fragmentation are formulated, and three different fragmentation strategies are presented, each emphasizing one of these requirements. Some test results are presented to show the performance of the various fragmentation strategie

    Hierarchical Multi-resolution Mesh Networks for Brain Decoding

    Full text link
    We propose a new framework, called Hierarchical Multi-resolution Mesh Networks (HMMNs), which establishes a set of brain networks at multiple time resolutions of fMRI signal to represent the underlying cognitive process. The suggested framework, first, decomposes the fMRI signal into various frequency subbands using wavelet transforms. Then, a brain network, called mesh network, is formed at each subband by ensembling a set of local meshes. The locality around each anatomic region is defined with respect to a neighborhood system based on functional connectivity. The arc weights of a mesh are estimated by ridge regression formed among the average region time series. In the final step, the adjacency matrices of mesh networks obtained at different subbands are ensembled for brain decoding under a hierarchical learning architecture, called, fuzzy stacked generalization (FSG). Our results on Human Connectome Project task-fMRI dataset reflect that the suggested HMMN model can successfully discriminate tasks by extracting complementary information obtained from mesh arc weights of multiple subbands. We study the topological properties of the mesh networks at different resolutions using the network measures, namely, node degree, node strength, betweenness centrality and global efficiency; and investigate the connectivity of anatomic regions, during a cognitive task. We observe significant variations among the network topologies obtained for different subbands. We, also, analyze the diversity properties of classifier ensemble, trained by the mesh networks in multiple subbands and observe that the classifiers in the ensemble collaborate with each other to fuse the complementary information freed at each subband. We conclude that the fMRI data, recorded during a cognitive task, embed diverse information across the anatomic regions at each resolution.Comment: 18 page

    A statistical model for brain networks inferred from large-scale electrophysiological signals

    Get PDF
    Network science has been extensively developed to characterize structural properties of complex systems, including brain networks inferred from neuroimaging data. As a result of the inference process, networks estimated from experimentally obtained biological data, represent one instance of a larger number of realizations with similar intrinsic topology. A modeling approach is therefore needed to support statistical inference on the bottom-up local connectivity mechanisms influencing the formation of the estimated brain networks. We adopted a statistical model based on exponential random graphs (ERGM) to reproduce brain networks, or connectomes, estimated by spectral coherence between high-density electroencephalographic (EEG) signals. We validated this approach in a dataset of 108 healthy subjects during eyes-open (EO) and eyes-closed (EC) resting-state conditions. Results showed that the tendency to form triangles and stars, reflecting clustering and node centrality, better explained the global properties of the EEG connectomes as compared to other combinations of graph metrics. Synthetic networks generated by this model configuration replicated the characteristic differences found in brain networks, with EO eliciting significantly higher segregation in the alpha frequency band (8-13 Hz) as compared to EC. Furthermore, the fitted ERGM parameter values provided complementary information showing that clustering connections are significantly more represented from EC to EO in the alpha range, but also in the beta band (14-29 Hz), which is known to play a crucial role in cortical processing of visual input and externally oriented attention. These findings support the current view of the brain functional segregation and integration in terms of modules and hubs, and provide a statistical approach to extract new information on the (re)organizational mechanisms in healthy and diseased brains.Comment: Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract appearing here is slightly shorter than that in the PDF fil
    corecore