11,458 research outputs found

    Simulation of the TDRS multipath environment

    Get PDF
    Design principles and implementation methods are discussed for simulating the propagation path between a tracking and data relay satellite and a mission spacecraft. The emphasis is on multipath and Doppler simulation but additive disturbances are also considered. The recommended form of the simulator is fed separately with the unmodulated carrier, the unmodulated subcarriers (or spread-spectrum components) and the data signals. The perturbations are also introduced separately; then successive modulation operations are performed. The simulator is segmented into elements that perform the various functions of direct and specular multipath, diffuse fading, Doppler shift and delay spread. Delay spreads are realized by discrete delays operating on baseband signals. Doppler simulation and ionospheric or diffuse multipath fading are applied to individual paths before or after modulation of the carrier by delayed baseband signals. Block diagrams are presented on how the different elements are combined to create a complete channel simulator

    Near-Capacity Turbo Coded Soft-decision Aided DAPSK/Star-QAM for Amplify-and-Forward based Cooperative Communications

    No full text
    Multilevel Differential Amplitude and Phase-Shift Keying (DAPSK) schemes do not require any channel estimation, which results in low complexity. In this treatise we derive the soft-output probability formulas required for a soft-decision based demodulation of high-order DAPSK, in order to facilitate iterative detection by exchanging extrinsic information with an outer Turbo Code (TC). Furthermore, when the TC block size is increased, the system operates closer to the channel capacity. Compared to the identical-throughput TC assisted 64-ary Differential Phase-Shift Keying (64-DPSK) scheme, the 4-ring based TC assisted 64-ary DAPSK arrangement has a power-efficiency improvement of 2.3 dB at a bit error rate (BER) of 10-5 . Furthermore, when the TC block size is increased, the system operates closer to the channel capacity. More specifically, when using a TC block length of 400 modulated symbols, the 64 DAPSK (4, 16) scheme is 7.56 dB away from its capacity curve, while it had a reduced gap as low as 2.25 dB, when using a longer TC block length of 40 000 modulated symbols. Finally, as a novel application example, the soft-decision M-DAPSK scheme was incorporated into an Amplify-and-Forward (AF) based cooperative communication system, which attains another 4.5 dB SNR improvement for a TC block length of 40 000 modulated symbols

    Harmonic chirp imaging method for ultrasound contrast agent

    Get PDF
    Coded excitation is currently used in medical ultrasound to increase signal-to-noise ratio (SNR) and penetration depth. We propose a chirp excitation method\ud for contrast agents using the second harmonic component of the response. This method is based on a compression filter that selectively compresses and extracts the second harmonic component from the received echo signal. Simulations have shown a clear increase in response for chirp excitation\ud over pulse excitation with the same peak amplitude. This was confirmed by two-dimensional (2-D) optical observations of bubble response with a fast framing camera. To evaluate the harmonic compression method, we applied it to\ud simulated bubble echoes, to measured propagation harmonics, and to B-mode scans of a flow phantom and compared it to regular pulse excitation imaging. An increase of approximately 10 dB in SNR was found for chirp excitation. The\ud compression method was found to perform well in terms of resolution. Axial resolution was in all cases within 10% of the axial resolution from pulse excitation. Range side-lobe levels were 30 dB below the main lobe for the simulated bubble echoes and measured propagation harmonics. However,\ud side-lobes were visible in the B-mode contrast images

    Coherence Multiplex System Topologies

    Get PDF
    Coherence multiplexing is a potentially inexpensive form of optical code-division multiple access, which is particularly suitable for short-range applications with moderate bandwidth requirements, such as access networks, LANs, or interconnects. Various topologies are known for constructing an optical transmission system in which several channels are coherence-multiplexed in one optical fiber. In this paper, the parallel array, the intrinsic reference ladder (IRL), and the discontinuous series system topologies will be further considered and compared with respect to code orthogonality requirements, theoretical performance, and some practical implementation aspects. A modification to the IRL system is proposed, resulting in a significant improvement in the theoretical performance

    A Turbo Detection and Sphere-Packing-Modulation-Aided Space-Time Coding Scheme

    No full text
    Arecently proposed space-time block-coding (STBC) signal-construction method that combines orthogonal design with sphere packing (SP), referred to here as STBC-SP, has shown useful performance improvements over Alamouti’s conventional orthogonal design. In this contribution, we demonstrate that the performance of STBC-SP systems can be further improved by concatenating SP-aided modulation with channel coding and performing demapping as well as channel decoding iteratively. We also investigate the convergence behavior of this concatenated scheme with the aid of extrinsic-information-transfer charts. The proposed turbo-detected STBC-SP scheme exhibits a “turbo-cliff” at Eb/N0 = 2.5 dB and provides Eb/N0 gains of approximately 20.2 and 2.0 dB at a bit error rate of 10?5 over an equivalent throughput uncoded STBC-SP scheme and a turbo-detected quadrature phase shift keying (QPSK) modulated STBC scheme, respectively, when communicating over a correlated Rayleigh fading channel. Index Terms—EXIT charts, iterative demapping, multidimensional mapping, space-time coding, sphere packing, turbo detection

    Study of spread spectrum multiple access systems for satellite communications with overlay on current services

    Get PDF
    The feasibility of using spread spectrum techniques to provide a low-cost multiple access system for a very large number of low data terminals was investigated. Two applications of spread spectrum technology to very small aperture terminal (VSAT) satellite communication networks are presented. Two spread spectrum multiple access systems which use a form of noncoherent M-ary FSK (MFSK) as the primary modulation are described and the throughput analyzed. The analysis considers such factors as satellite power constraints and adjacent satellite interference. Also considered is the effect of on-board processing on the multiple access efficiency and the feasibility of overlaying low data rate spread spectrum signals on existing satellite traffic as a form of frequency reuse is investigated. The use of chirp is examined for spread spectrum communications. In a chirp communication system, each data bit is converted into one or more up or down sweeps of frequency, which spread the RF energy across a broad range of frequencies. Several different forms of chirp communication systems are considered, and a multiple-chirp coded system is proposed for overlay service. The mutual interference problem is examined in detail and a performance analysis undertaken for the case of a chirp data channel overlaid on a video channel
    corecore