2,672 research outputs found

    Network Deployment for Maximal Energy Efficiency in Uplink with Zero-Forcing

    Full text link
    This work aims to design a cellular network for maximal energy efficiency (EE). In particular, we consider the uplink with multi-antenna base stations and assume that zero- forcing (ZF) combining is used for data detection with imperfect channel state information. Using stochastic geometry and a new lower bound on the average per-user spectral efficiency of the network, we optimize the pilot reuse factor, number of antennas and users per base station. Closed-form expressions are computed from which valuable insights into the interplay between the optimization variables, hardware characteristics, and propagation environment are obtained. Numerical results are used to validate the analysis and make comparisons with a network using maximum ratio (MR) combining. The results show that a Massive MIMO setup arises as the EE-optimal network configuration. In addition, ZF provides higher EE than MR while allowing a smaller pilot reuse factor and a more dense network deployment.Comment: 7 pages, 3 figures; presented at the Global Communications Conference (GLOBECOM'17), 4-8 December, 2017, Singapor

    Deploying Dense Networks for Maximal Energy Efficiency: Small Cells Meet Massive MIMO

    Full text link
    How would a cellular network designed for maximal energy efficiency look like? To answer this fundamental question, tools from stochastic geometry are used in this paper to model future cellular networks and obtain a new lower bound on the average uplink spectral efficiency. This enables us to formulate a tractable uplink energy efficiency (EE) maximization problem and solve it analytically with respect to the density of base stations (BSs), the transmit power levels, the number of BS antennas and users per cell, and the pilot reuse factor. The closed-form expressions obtained from this general EE maximization framework provide valuable insights on the interplay between the optimization variables, hardware characteristics, and propagation environment. Small cells are proved to give high EE, but the EE improvement saturates quickly with the BS density. Interestingly, the maximal EE is achieved by also equipping the BSs with multiple antennas and operate in a "massive MIMO" fashion, where the array gain from coherent detection mitigates interference and the multiplexing of many users reduces the energy cost per user.Comment: To appear in IEEE Journal on Selected Areas in Communications, 15 pages, 7 figures, 1 tabl

    Adaptive Multicell 3D Beamforming in Multi-Antenna Cellular Networks

    Full text link
    We consider a cellular network with multi-antenna base stations (BSs) and single-antenna users, multicell cooperation, imperfect channel state information, and directional antennas each with a vertically adjustable beam. We investigate the impact of the elevation angle of the BS antenna pattern, denoted as tilt, on the performance of the considered network when employing either a conventional single-cell transmission or a fully cooperative multicell transmission. Using the results of this investigation, we propose a novel hybrid multicell cooperation technique in which the intercell interference is controlled via either cooperative beamforming in the horizontal plane or coordinated beamfroming in the vertical plane of the wireless channel, denoted as adaptive multicell 3D beamforming. The main idea is to divide the coverage area into two disjoint vertical regions and adapt the multicell cooperation strategy at the BSs when serving each region. A fair scheduler is used to share the time-slots between the vertical regions. It is shown that the proposed technique can achieve performance comparable to that of a fully cooperative transmission but with a significantly lower complexity and signaling requirements. To make the performance analysis computationally efficient, analytical expressions for the user ergodic rates under different beamforming strategies are also derived.Comment: Accepted for publication in IEEE Transaction on Vehicular Technolog

    Deploying Dense Networks for Maximal Energy Efficiency: Small Cells Meet Massive MIMO

    Get PDF
    How would a cellular network designed for maximal energy efficiency look like? To answer this fundamental question, we model future cellular networks using stochastic geometry and obtain a new lower bound on the average uplink spectral efficiency. This enables us to formulate a tractable energy efficiency (EE) maximization problem and solve it analytically with respect to the density of base stations (BSs), the transmit power levels, the number of BS antennas and users per cell, and the pilot reuse factor. The closed-form expressions obtained from this general EE maximization framework provide valuable insights on the interplay between the optimization variables, hardware characteristics, and propagation environment. Small cells are proved to give high EE, but the EE improvement saturates quickly with the BS density. Interestingly, the maximal EE is obtained by also equipping the BSs with multiple antennas and operate in a "massive MIMO" fashion, where the array gain from coherent detection mitigates interference and the multiplexing of many users reduces the energy cost per user

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Local-Partial Signal Combining Schemes for Cell-Free Large-Scale MU-MIMO Systems with Limited Fronthaul Capacity and Spatial Correlation Channels

    Get PDF
    Cell-free large-scale multi-user MIMO is a promising technology for the 5G-and-beyond mobile communication networks. Scalable signal processing is the key challenge in achieving the benefits of cell-free systems. This study examines a distributed approach for cell-free deployment with user-centric configuration and finite fronthaul capacity. Moreover, the impact of scaling the pilot length, the number of access points (APs), and the number of antennas per AP on the achievable average spectral efficiency are investigated. Using the dynamic cooperative clustering (DCC) technique and large-scale fading decoding process, we derive an approximation of the signal-tointerference-plus-noise ratio in the criteria of two local combining schemes: Local-Partial Regularized Zero Forcing (RZF) and Local Maximum Ratio (MR). The results indicate that distributed approaches in the cell-free system have the advantage of decreasing the fronthaul signaling and the computing complexity. The results also show that the Local-Partial RZF provides the highest average spectral efficiency among all the distributed combining schemes because the computational complexity of the Local-Partial RZF is independent of the UTs. Therefore, it does not grow as the number of user terminals (UTs) increases

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675
    • …
    corecore