8,726 research outputs found

    A Study and Estimation a Lost Person Behavior in Crowded Areas Using Accelerometer Data from Smartphones

    Get PDF
    As smartphones become more popular, applications are being developed with new and innovative ways to solve problems in the day-to-day lives of users. One area of smartphone technology that has been developed in recent years is human activity recognition (HAR). This technology uses various sensors that are built into the smartphone to sense a person\u27s activity in real time. Applications that incorporate HAR can be used to track a person\u27s movements and are very useful in areas such as health care. We use this type of motion sensing technology, specifically, using data collected from the accelerometer sensor. The purpose of this study is to study and estimate the person who may become lost in a crowded area. The application is capable of estimating the movements of people in a crowded area, and whether or not the person is lost in a crowded area based on his/her movements as detected by the smartphone. This will be a great benefit to anyone interested in crowd management strategies. In this paper, we review related literature and research that has given us the basis for our own research. We also detail research on lost person behavior. We looked at the typical movements a person will likely make when he/she is lost and used these movements to indicate lost person behavior. We then evaluate and describe the creation of the application, all of its components, and the testing process

    DeepWalking: Enabling Smartphone-based Walking Speed Estimation Using Deep Learning

    Full text link
    Walking speed estimation is an essential component of mobile apps in various fields such as fitness, transportation, navigation, and health-care. Most existing solutions are focused on specialized medical applications that utilize body-worn motion sensors. These approaches do not serve effectively the general use case of numerous apps where the user holding a smartphone tries to find his or her walking speed solely based on smartphone sensors. However, existing smartphone-based approaches fail to provide acceptable precision for walking speed estimation. This leads to a question: is it possible to achieve comparable speed estimation accuracy using a smartphone over wearable sensor based obtrusive solutions? We find the answer from advanced neural networks. In this paper, we present DeepWalking, the first deep learning-based walking speed estimation scheme for smartphone. A deep convolutional neural network (DCNN) is applied to automatically identify and extract the most effective features from the accelerometer and gyroscope data of smartphone and to train the network model for accurate speed estimation. Experiments are performed with 10 participants using a treadmill. The average root-mean-squared-error (RMSE) of estimated walking speed is 0.16m/s which is comparable to the results obtained by state-of-the-art approaches based on a number of body-worn sensors (i.e., RMSE of 0.11m/s). The results indicate that a smartphone can be a strong tool for walking speed estimation if the sensor data are effectively calibrated and supported by advanced deep learning techniques.Comment: 6 pages, 9 figures, published in IEEE Global Communications Conference (GLOBECOM

    Classification of sporting activities using smartphone accelerometers

    Get PDF
    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today’s society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach

    Is the timed-up and go test feasible in mobile devices? A systematic review

    Get PDF
    The number of older adults is increasing worldwide, and it is expected that by 2050 over 2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances. Several physiotherapy methods that involve measurement of movements, such as the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological symptoms and promotion of health and well-being. In this systematic review, the authors aim to determine how the inertial sensors embedded in mobile devices are employed for the measurement of the different parameters involved in the Timed-Up and Go test. The main contribution of this paper consists of the identification of the different studies that utilize the sensors available in mobile devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile devices embedded motion sensors can be used for these types of studies and the most commonly used sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones. The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some diseases, as well as the measurement of the subject's performance during the test execution.info:eu-repo/semantics/publishedVersio

    Towards a Practical Pedestrian Distraction Detection Framework using Wearables

    Full text link
    Pedestrian safety continues to be a significant concern in urban communities and pedestrian distraction is emerging as one of the main causes of grave and fatal accidents involving pedestrians. The advent of sophisticated mobile and wearable devices, equipped with high-precision on-board sensors capable of measuring fine-grained user movements and context, provides a tremendous opportunity for designing effective pedestrian safety systems and applications. Accurate and efficient recognition of pedestrian distractions in real-time given the memory, computation and communication limitations of these devices, however, remains the key technical challenge in the design of such systems. Earlier research efforts in pedestrian distraction detection using data available from mobile and wearable devices have primarily focused only on achieving high detection accuracy, resulting in designs that are either resource intensive and unsuitable for implementation on mainstream mobile devices, or computationally slow and not useful for real-time pedestrian safety applications, or require specialized hardware and less likely to be adopted by most users. In the quest for a pedestrian safety system that achieves a favorable balance between computational efficiency, detection accuracy, and energy consumption, this paper makes the following main contributions: (i) design of a novel complex activity recognition framework which employs motion data available from users' mobile and wearable devices and a lightweight frequency matching approach to accurately and efficiently recognize complex distraction related activities, and (ii) a comprehensive comparative evaluation of the proposed framework with well-known complex activity recognition techniques in the literature with the help of data collected from human subject pedestrians and prototype implementations on commercially-available mobile and wearable devices

    Human activity recognition making use of long short-term memory techniques

    Get PDF
    The optimisation and validation of a classifiers performance when applied to real world problems is not always effectively shown. In much of the literature describing the application of artificial neural network architectures to Human Activity Recognition (HAR) problems, postural transitions are grouped together and treated as a singular class. This paper proposes, investigates and validates the development of an optimised artificial neural network based on Long-Short Term Memory techniques (LSTM), with repeated cross validation used to validate the performance of the classifier. The results of the optimised LSTM classifier are comparable or better to that of previous research making use of the same dataset, achieving 95% accuracy under repeated 10-fold cross validation using grouped postural transitions. The work in this paper also achieves 94% accuracy under repeated 10-fold cross validation whilst treating each common postural transition as a separate class (and thus providing more context to each activity)
    corecore